首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333830篇
  免费   24876篇
  国内免费   12622篇
电工技术   17959篇
技术理论   56篇
综合类   19793篇
化学工业   56830篇
金属工艺   18696篇
机械仪表   21272篇
建筑科学   25847篇
矿业工程   11017篇
能源动力   9793篇
轻工业   18781篇
水利工程   5289篇
石油天然气   23078篇
武器工业   2620篇
无线电   36733篇
一般工业技术   39943篇
冶金工业   18485篇
原子能技术   3245篇
自动化技术   41891篇
  2024年   1292篇
  2023年   5224篇
  2022年   8925篇
  2021年   12531篇
  2020年   9862篇
  2019年   8030篇
  2018年   9227篇
  2017年   10424篇
  2016年   9319篇
  2015年   12299篇
  2014年   15937篇
  2013年   19265篇
  2012年   20259篇
  2011年   22555篇
  2010年   19305篇
  2009年   18434篇
  2008年   18060篇
  2007年   17491篇
  2006年   18365篇
  2005年   16199篇
  2004年   10422篇
  2003年   9184篇
  2002年   8206篇
  2001年   7519篇
  2000年   8051篇
  1999年   9692篇
  1998年   8200篇
  1997年   6801篇
  1996年   6396篇
  1995年   5359篇
  1994年   4399篇
  1993年   3098篇
  1992年   2501篇
  1991年   1967篇
  1990年   1510篇
  1989年   1238篇
  1988年   1021篇
  1987年   682篇
  1986年   537篇
  1985年   342篇
  1984年   245篇
  1983年   204篇
  1982年   197篇
  1981年   129篇
  1980年   130篇
  1979年   68篇
  1978年   33篇
  1977年   38篇
  1976年   55篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
132.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
133.
截至2020年年底,全国垃圾焚烧发电行业垃圾处理能力超60万吨/日,并网装机容量达到1533万千瓦,年焚烧处理垃圾量约为1.4亿吨."十三五"期间行业发展迅猛,生活垃圾焚烧发电项目在守护城乡环境、节约土地资源等方面发挥了重要作用,已是民生兜底工程,城乡协同发展的重要基础设施.在2030年碳达峰、2060年碳中和的大背景下,行业将如何发展.文中对行业现状进行简单分析,对"十四五"期间行业发展趋势进行预判,并提出相关行业发展建议.  相似文献   
134.
135.
Li  Ruyi  Wang  Yang 《Catalysis Letters》2022,152(6):1742-1751
Catalysis Letters - Inspired by the discovery of the special structures of Ti-doped boron nitride fullerenes [(2019) Nat Commun 10: 4908], we herein present a computational investigation of...  相似文献   
136.
137.
Zhang  Xi  Wang  Xianhai  Zhao  Hongke  Ordóñez de Pablos  Patricia  Sun  Yongqiang  Xiong  Hui 《Scientometrics》2019,119(3):1311-1344
Scientometrics - Altmetrics indices are increasingly applied to measure scholarly influence in recent years because they can reflect the influence of research outputs more timely comparing with...  相似文献   
138.
Ahmad  Bilal  Jian  Wang  Enam  Rabia Noor  Abbas  Ali 《Wireless Personal Communications》2021,118(2):1055-1073

As per the most recent literature, Orthogonal Frequency Division Multiplexing (OFDM), a multi access technique, is considered most suitable for the 3G, 4G and 5G techniques in high speed wireless communication. What made OFDM most popular is its ability to deliver high bandwidth efficiency and superior data rate. Besides it, high value of peak to average power ratio (PAPR) and Inter Carrier Interference (ICI) are the challenges to tackle down via appropriate mitigation scheme. As a research contribution in the present work, an improved self-cancellation (SC) technique is designed and simulated through Simulink to mitigate the effect of ICI. This novel proposed technique (Improved SC) is designed over discrete wavelet transform (DWT) based OFDM and compared with conventional SC scheme over different channel conditions i.e. AWGN and Rayleigh fading environments. It is found that proposed DWT-OFDM with Improved SC scheme outperforms conventional SC technique significantly, under both AWGN and Rayleigh channel conditions. Further, in order to justify the novelty in the research contribution, a Split-DWT based Simulink model for Improved SC scheme is investigated to analyse the BER performance. This Split-DWT based Simulink model presented here foretells the future research potential in wavelet hybridization of OFDM to side-line ICI effects more efficiently.

  相似文献   
139.
ZnO/Cu2S nanotube arrays are fabricated firstly by a facile and capping-agent-free method, and the photo-electrochemical performance has been studied systematically. The results show that ZnO/Cu2S nanotube arrays achieve enhanced photo-electrochemical water splitting performance and the photocurrent densities of ZnO/Cu2S are 7.9 times than that of ZnO at 0 V versus Ag/AgCl. The performance of the ZnO/Cu2S nanotube arrays can be adjusted by changing the amount of Cu2S microcrystals. The results confirm that the enhanced photo-electrochemical performance of ZnO/Cu2S is due to the significantly improved visible light absorption, effective separation of photo-induced carriers due to the well band energy match and the formed p-n junction between ZnO and Cu2S.  相似文献   
140.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号