首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   45篇
  国内免费   7篇
电工技术   20篇
化学工业   135篇
金属工艺   20篇
机械仪表   25篇
建筑科学   16篇
矿业工程   2篇
能源动力   36篇
轻工业   81篇
水利工程   10篇
石油天然气   11篇
武器工业   1篇
无线电   71篇
一般工业技术   103篇
冶金工业   24篇
原子能技术   6篇
自动化技术   109篇
  2024年   1篇
  2023年   14篇
  2022年   19篇
  2021年   42篇
  2020年   35篇
  2019年   56篇
  2018年   44篇
  2017年   41篇
  2016年   48篇
  2015年   24篇
  2014年   43篇
  2013年   70篇
  2012年   44篇
  2011年   34篇
  2010年   27篇
  2009年   17篇
  2008年   15篇
  2007年   16篇
  2006年   13篇
  2005年   7篇
  2004年   3篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有670条查询结果,搜索用时 0 毫秒
11.
A miniaturized, polarization insensitive, and fully passive chipless radio frequency identification tag is proposed in this research article. The realized tag is based on slotted elliptical structures in a nested loop fashion with identical lengths and widths of slot resonators. Alteration of data sequence is accomplished by addition and elimination of nested resonators in the geometric structure. The tag is capable to encode 10 bits of data and covers spectral range from 3.6 to 15.6 GHz. The formulated structure demonstrates polarization insensitive characteristic. The data encoding structure is analyzed and optimized for different substrates that are, Rogers RT/duroid/5880, Rogers RT/duroid/5870, and Taconic TLX‐0 over the miniaturized footprint of 22.8 × 16 mm2. The presented tag is robust, novel, compact, and flexible exhibiting a stable response to impinging electromagnetic waves at various angles of incidence.  相似文献   
12.
Water Resources Management - The aim of this article is to determine how human interventions in upstream countries coupled with drought events are affecting the flow regime of downstream countries...  相似文献   
13.
Poly(vinyl alcohol) (PVA) hydrogels with tissue-like viscoelasticity, excellent biocompatibility, and hydrophilicity have been considered as promising cartilage replacement materials. However, the low mechanical properties of pure PVA hydrogels limit their applications for bearing complicated loads. Herein, we report silicon dioxide (SiO2)/PVA composite hydrogels fabricated by fabricated cyclically freezing/thawing the aqueous mixture of PVA and methyltrimethoxysilane (MTMS). MTMS hydrolyzes and forms SiO2 particles in situ to reinforce PVA hydrogel. Meanwhile, silanol group condenses with hydroxyl groups of PVA and chemically bonds with PVA. The resulting SiO2/PVA hydrogels exhibit much better mechanical properties than bare PVA hydrogel. In addition, the composite hydrogels keep very low swellable property. This prepared composite hydrogels are promising in a variety of biomedical applications such as artificial articular cartilage, drug delivery, and biosensors. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46895.  相似文献   
14.
An easy and ecofriendly method for designing double‐network (DN) hydrogels based on chitosan and poly(vinyl alcohol) (PVA) with high mechanical performance is described. When covalent bonds in the networks are used as crosslinking agents in the achievement of a higher mechanical strength, the irreversible deformation of these hydrogels after a large force is applied is still one of the most important obstacles. To overcome this problem, we used physical crosslinking for both networks. The mechanical strength, surface morphology, and cytotoxicity of the films were studied by tensile testing, scanning electron microscopy analysis, and an MTT assay. The synthesized chitosan–PVA DN hydrogels showed a large improvement in the tensile strength to 11.52 MPa with an elongation of 265.6%. The surface morphologies of the films demonstrated the effective interactions between the two networks and a suitable porosity. Also, because of the use of a natural polymer and honey as a plasticizer, the cell culture indicated that the synthesized DN hydrogels had good biocompatibility (with 327.49 ± 11.22% viability) and could be used as capable biomaterials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45752.  相似文献   
15.
Relationship between rheology, morphology, and electrical conductivity of the poly(vinylidene fluoride)/polyethylene/graphene nano‐platelets ternary system (PVDF/PE/GnP) were investigated. All the blend nanocomposites were prepared via a two‐step melt mixing method. GnP (0.75 and 1.5 wt %) was first compounded with PVDF and then the resulted premixtuers were melt mixed with PE to achieve the desired compositions. The corresponding reference nanocomposites and filler‐less blends were also prepared. Effect of an interfacial agent (PEMA; maleic anhydride grafted polyethylene) was also studied in this work. The results of rheological analysis in conjunction with the Raman spectroscopy experiments revealed that GnP had higher affinity to PVDF than PE, which in turn led to creation of conductive networks of GnP (1.5 wt %) in PVDF matrix exhibiting the electrical conductivity of about 10?2 (S/cm). Double percolated micro‐structure was predicted for the PE/PVDF 40/60 (wt/wt) blend containing low GnP content (0.9 wt %) and confirmed via direct electron microscopy and conductivity analysis. Using 5 wt % of the PEMA reduced the conductivity to 10?5 (S/cm) and further increase in PEMA content to 10 wt % led to non‐conductive characteristics. The latter was attributed to the migration of GnP from the PVDF phase to PE/PEMA phase and hence disturbance of double percolated micro‐structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46333.  相似文献   
16.
Bi-supported Ziegler–Natta catalysts (TiCl4/MCM-41/MgCl2 (ethoxide type)) were synthesized to improve the morphology and the properties of polyethylene. The morphology control is a crucial issue in polymerization process, while tailoring the properties of polymers is needed for specific applications. The catalysts were synthesized in different ratios of two supports with impregnation method. The polymerization process was carried out in atmospheric slurry reactor. The catalysts were characterized with scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM–EDX), inductively coupled plasma, Fourier transform infrared spectrometry (FTIR), and Brunauer-Emmett-Teller (BET) methods. The polymers were analyzed with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry, FTIR, and tensile-strength analyses. Ubbelohde viscometer and frequency sweep measurements showed that the synthesized polymers are ultra-high-molecular-weight polyethylene. Mechanical properties of polymers showed higher Young's modulus in samples containing MCM-41, having higher thermal stability supported by TGA analysis. SEM images of bi-supported catalyst showed a controlled spherical morphology with uniform size distribution. SEM analysis support that the polymers replicate their morphology from catalyst, improving their morphology comparing to MgCl2-supported catalyst. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48553.  相似文献   
17.
Theoretical Foundations of Chemical Engineering - In this work, with the aim of accurate prediction of water content, H2S and CO2 absorption capacity of diethanolamine (DEA) solvent in Khangiran...  相似文献   
18.
Sulfonyl hydrazides are easily accessible, non-toxic, stable and extremely valuable compounds in organic synthesis that are extensively utilized as sulfonylating and arylating agents (through the cleavage of their sulfur–nitrogen and carbon–sulfur bonds, respectively) for the synthesis of diverse range of biologically active molecules such as biaryls, sulfones, and sulfonamides. These compounds have also been broadly used as environmentally friendly, stable, and odorless sulfenylation agents (through the cleavage of their sulfur–nitrogen and sulfur–oxygen bonds) in the synthesis of synthetically and biologically important thioether derivatives. In this review, we will highlight the most important advances and explorations in the direct C–H bond sulfenylation of (het)aromatic compounds with these compounds during the period 2013 to October 2018. Particular emphasis is placed on the mechanistic aspects of the reactions.  相似文献   
19.
Khalifeh  Sara  Tavakoli  Mitra 《Iranian Polymer Journal》2019,28(12):1023-1033

Microstructural development of elastomeric nanocomposites based on (50/50 wt%) styrene butadiene rubber (SBR) and epoxidized natural rubber (50 mol% epoxidation, ENR50) as the rubber matrix including two types of carbon fillers, carbon black (CB) and functionalized multiwall carbon nanotube (NH2-MWCNT), which were prepared through melt mixing, was studied. The results from FTIR analysis show that there is interaction between functional groups on MWCNT surface and the rubber chains. The AFM analysis also indicates good dispersion of filler particles in the rubber phases. FESEM images from cryo-fractured surface of samples have revealed that nanotubes were rarely pulled out of matrix and their diameter increased, resulting from good interaction between MWCNTs and rubber chains. The DMA results confirm good interfacial interaction between them. Furthermore, the reduced difference between the two Tgs of phases (ΔTg) shows that the incorporation of 3 phr MWCNT into the blend leads to increment in rubber phase compatibility but at higher MWCNT content (5 phr) due to lower Mooney viscosity of SBR phase, MWCNTs tend to remain in this phase. The bound rubber was adopted to characterize the polymer–filler interaction, showing that bound rubber content has an increasing trend with increasing in fillers content. The cure rheometric studies reveal that MWCNTs accelerate the cure process due to the presence of amine groups on the nanotube surface. In addition, the mechanical properties of samples show an increasing trend by increasing nano-filler content.

  相似文献   
20.
Membranes with asymmetric wettability-Janus membranes-have recently received considerable attention for a variety of critical applications. Here, we report on a simple approach to introduce asymmetric wettability into hydrophilic porous domains. Our approach is based on the physicochemical-selective deposition of polytetrafluoroethylene (PTFE) on hydrophilic polymeric substrates. To achieve selective deposition of PTFE, we inhibit the polymerization reaction within the porous domain. We prefill the substrates with glycerol, containing a known amount of free radical inhibitor, and utilize initiated chemical vapor deposition (iCVD) for the polymerization of PTFE. We show that the glycerol/inhibitor mixture hinders the deposition of PTFE within the membrane pores. As a result, the surface of the substrates remains open and porous. The fabricated Janus membranes show stable wetting-resistant properties, evaluated through sessile drop contact angle measurements and direct contact membrane distillation (DCMD).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号