首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6271篇
  免费   164篇
  国内免费   7篇
电工技术   80篇
综合类   2篇
化学工业   1354篇
金属工艺   132篇
机械仪表   113篇
建筑科学   360篇
矿业工程   6篇
能源动力   145篇
轻工业   498篇
水利工程   49篇
石油天然气   13篇
武器工业   2篇
无线电   382篇
一般工业技术   970篇
冶金工业   1215篇
原子能技术   45篇
自动化技术   1076篇
  2022年   56篇
  2021年   75篇
  2020年   62篇
  2019年   94篇
  2018年   91篇
  2017年   77篇
  2016年   98篇
  2015年   100篇
  2014年   136篇
  2013年   352篇
  2012年   236篇
  2011年   337篇
  2010年   270篇
  2009年   245篇
  2008年   325篇
  2007年   284篇
  2006年   259篇
  2005年   202篇
  2004年   196篇
  2003年   178篇
  2002年   186篇
  2001年   101篇
  2000年   90篇
  1999年   99篇
  1998年   101篇
  1997年   97篇
  1996年   101篇
  1995年   105篇
  1994年   112篇
  1993年   97篇
  1992年   97篇
  1991年   70篇
  1990年   79篇
  1989年   96篇
  1988年   66篇
  1987年   61篇
  1986年   83篇
  1985年   96篇
  1984年   78篇
  1983年   94篇
  1982年   85篇
  1981年   88篇
  1980年   73篇
  1979年   78篇
  1978年   58篇
  1977年   66篇
  1976年   59篇
  1975年   66篇
  1974年   47篇
  1973年   53篇
排序方式: 共有6442条查询结果,搜索用时 15 毫秒
71.
Rapid growth of computer network sizes and uses necessitate analysis of network application middleware in terms of its scalability as well as performance. In this paper we analyze a distributed network management middleware based on agents that can be dispatched to locations where they can execute close to the managed nodes. The described middleware operates between the network protocol layer and the application layer and uses standard TCP protocol and SNMP probes to interface the network. By aggregating requests from many users into a single agent, our system allows multiple managers to probe problem areas with minimal management traffic overhead. We discuss and quantify the benefits of the described middleware by implementing real‐time network managers using our system. The main result of this paper is a comparison of scalability and efficiency of our agent‐based management middleware and traditional SNMP‐based data collection. To this end, we measured traffic in both real and simulated networks. In the latter case, we designed, used and described here a method of separating simulated application flow into separate subflows to simplify design of simulations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
72.
The thermal conductivity of gas‐permeated single‐walled carbon nanotube (SWCNT) aerogel (8 kg m?3 density, 0.0061 volume fraction) is measured experimentally and modeled using mesoscale and atomistic simulations. Despite the high thermal conductivity of isolated SWCNTs, the thermal conductivity of the evacuated aerogel is 0.025 ± 0.010 W m?1 K?1 at a temperature of 300 K. This very low value is a result of the high porosity and the low interface thermal conductance at the tube–tube junctions (estimated as 12 pW K?1). Thermal conductivity measurements and analysis of the gas‐permeated aerogel (H2, He, Ne, N2, and Ar) show that gas molecules transport energy over length scales hundreds of times larger than the diameters of the pores in the aerogel. It is hypothesized that inefficient energy exchange between gas molecules and SWCNTs gives the permeating molecules a memory of their prior collisions. Low gas‐SWCNT accommodation coefficients predicted by molecular dynamics simulations support this hypothesis. Amplified energy transport length scales resulting from low gas accommodation are a general feature of CNT‐based nanoporous materials.  相似文献   
73.
The goals of the present study are to establish an in vitro co‐culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well‐defined silk protein biomaterials in 2D and 3D formats in combination with human cells. Parathyroid hormone (PTH) and glucose‐dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on human mesenchymal stem cells (hMSCs). The cell‐modified biomaterial surfaces are reconstructed from scanning electron microscopy images into 3D models for quantitative measurement of surface characteristics. Increased calcium deposition and surface roughness are found in 3D surface models of silk protein films remodeled by co‐cultures containing tethered PTH, and decreased surface roughness is found for the films remodeled by tethered GIP co‐cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast‐osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast‐osteoclast interactions are mimicked for a better understanding of bone remodeling.  相似文献   
74.
Silver nanowire coatings are an attractive alternative to indium tin oxide for producing transparent conductors. To fabricate coatings with low sheet resistance required for touchscreen displays, a multi‐layer network of silver nanowires must be produced that may not be cost effective. This problem is counteracted here by modifying the electrical properties of an ultra‐low‐density nanowire network through local deposition of conducting graphene platelets. Unlike other solution‐processed materials, such as graphene oxide, our pristine graphene is free of oxygen functional groups, resulting in it being electrically conducting without the need for further chemical treatment. Graphene adsorption at inter‐wire junctions as well as graphene connecting adjacent wires contributes to a marked enhancement in electrical properties. Using our approach, the amount of nanowires needed to produce viable transparent electrodes could be more than 50 times less than the equivalent pristine high density nanowire networks, thus having major commercial implications. Using a laser ablation process, it is shown that the resulting films can be patterned into individual electrode structures, which is a pre‐requisite to touchscreen sensor fabrication.  相似文献   
75.
This report demonstrates highly efficient nonradiative energy transfer (NRET) from alloyed CdSeS/ZnS semiconductor nanocrystal quantum dots (QDs) to MoS2 films of varying layer thicknesses, including pristine monolayers, mixed monolayer/bilayer, polycrystalline bilayers, and bulk‐like thicknesses, with NRET efficiencies of over 90%. Large‐area MoS2 films are grown on Si/SiO2 substrates by chemical vapor deposition. Despite the ultrahigh NRET efficiencies there is no distinct increase in the MoS2 photoluminescence intensity. However, by studying the optoelectronic properties of the MoS2 devices before and after adding the QD sensitizing layer photocurrent enhancements as large as ≈14‐fold for pristine monolayer devices are observed, with enhancements on the order of ≈2‐fold for MoS2 devices of mixed monolayer and bilayer thicknesses. For the polycrystalline bilayer and bulk‐like MoS2 devices there is almost no increase in the photocurrent after adding the QDs. Industrially scalable techniques are specifically utilized to fabricate the samples studied in this report, demonstrating the viability of this hybrid structure for commercial photodetector or light harvesting applications.  相似文献   
76.
There has been growing interest within the satellite navigation community in the possibility of delivering positioning and timing services from existing or emerging constellations of Low-Earth Orbit communication satellites. At the same time, the international maritime community has been investigating the potential use of communication signals transmitted from shore-based stations for positioning—a concept commonly referred to as ‘ranging mode’, or R-Mode. The driving force for these developments is the desire to reduce the reliance on traditional Global Navigation Satellite Systems (GNSS). One of the technologies being considered for use in R-Mode is the evolution of the Automatic Identification System (AIS) known as the Very High Frequency Data Exchange System (VDES). VDES has a terrestrial and a satellite component. The feasibility of using terrestrial VDES transmissions for ranging was studied in a previous publication by the authors. This paper builds on the previous study and extends its results to the satellite component of VDES. Statistical bounds on the ranging error are derived for all downlink waveforms currently being considered for use in satellite VDES and for several custom-designed transmission formats. The analysis supports the feasibility of using both the existing and custom waveforms in ranging applications and points to related trade-offs that will need to be considered in the design of satellite VDES R-Mode systems.  相似文献   
77.
本文介绍了多重转换这一实现冗余电源系统电流限制的新方法,以及具体的解决方案--TPS2359.新型TPS2359热插拔控制器集成了两个AdvancedMC(AMC)模块的所有电源管理功能,其电流限制电路使得设计人员可以满足苛刻的AMC要求.这具有非常重要的意义,因为许多应用都使用了冗余电源.无论连接到负载的电源数量如何,一种称为多重转换的独特特性均可保持一个固定的电流限制.  相似文献   
78.
Small amounts of impurity, even one part in one thousand, in polymer bulk heterojunction solar cells can alter the electronic properties of the device, including reducing the open circuit voltage, the short circuit current and the fill factor. Steady state studies show a dramatic increase in the trap‐assisted recombination rate when [6,6]‐phenyl C84 butyric acid methyl ester (PC84BM) is introduced as a trap site in polymer bulk heterojunction solar cells made of a blend of the copolymer poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and the fullerene derivative [6,6]‐phenyl C61 butyric acid methyl ester (PC60BM). The trap density dependent recombination studied here can be described as a combination of bimolecular and Shockley–Read–Hall recombination; the latter is dramatically enhanced by the addition of the PC84BM traps. This study reveals the importance of impurities in limiting the efficiency of organic solar cell devices and gives insight into the mechanism of the trap‐induced recombination loss.  相似文献   
79.
Novel biological vascular conduits, such as decellularized tissue engineered vascular grafts (TEVGs) are hindered by high thrombogenicity. To mimic the antithrombogenic surface of native vessels with a continuous glycosaminoglycan layer that is present on endothelial cells (ECs), a hyaluronic acid (HA) modified surface is established, to effectively shield blood platelets from collagen‐triggered activation. Using the amine groups present on 4 mm diameter decellularized TEVGs, a continuous HA hydrogel coating is built via a bifunctional thiol‐reactive cross‐linker, thereby avoiding nonspecific collagen matrix cross‐linking. The HA hydrogel layer recreates a luminal wall, “hiding” exposed collagen from the bloodstream. In vitro blood tests show that adhered platelets, fibrinogen absorption, and fibrin formation on HA‐coated decellularized TEVGs are significantly lower than on uncoated decellularized TEVGs. The HA surface also inhibits macrophage adhesion in vitro. HA‐coated decellularized syngeneic rat aortae (≈1.5 mm diameter), and TEVGs in rat and canine models, respectively, are protected from aggressive thrombus formation, and preserve normal blood flow. Re‐endothelialization is also observed. HA‐coated TEVGs may be an off‐the‐shelf small‐diameter vascular graft with dual benefits: antithrombogenic protection and promotion of endothelium.  相似文献   
80.
Porous carbon scaffolds can host lithium (Li) metal anodes to potentially enable stable Li metal batteries. However, the poor Li metal wettability on the carbon surface has inhibited the uniform distribution of metallic Li on most carbon scaffolds. Herein, this work reports a lithiophilic top layer through mild surface ozonolysis and ammoniation methods can universally facilitate the infiltration of liquid Li metal into most carbon matrices. Based on this finding, thin, a lightweight Li@carbon film (CF) composite anode with a high practical capacity of 3222 mAh g?1 and suppressed volume expansion and dendrite formation is reported. It is observed that the deep stripping/plating pre‐cycling yields dense, trunky Li metal in the Li@CF composite, which allows for favorable long‐term cycling performance. The full cell combining the thin Li@CF composite anode and a high‐mass‐loading, cobalt‐free cathode can deliver high reversible capacity, good cycle stability, and good rate capability in the conventional carbonate electrolyte. The present study further establishes the relationship between lithiophilicity and hydrophilicity for carbon materials as well as provides insights into improving the liquid Li metal infiltration into other carbon scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号