首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   3篇
  国内免费   1篇
电工技术   6篇
综合类   3篇
化学工业   95篇
金属工艺   8篇
机械仪表   20篇
建筑科学   4篇
矿业工程   2篇
能源动力   33篇
轻工业   27篇
水利工程   3篇
石油天然气   1篇
无线电   48篇
一般工业技术   68篇
冶金工业   10篇
原子能技术   1篇
自动化技术   72篇
  2024年   5篇
  2023年   4篇
  2022年   20篇
  2021年   12篇
  2020年   18篇
  2019年   14篇
  2018年   13篇
  2017年   15篇
  2016年   20篇
  2015年   9篇
  2014年   20篇
  2013年   41篇
  2012年   35篇
  2011年   30篇
  2010年   29篇
  2009年   14篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   10篇
  2004年   3篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1990年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有401条查询结果,搜索用时 15 毫秒
61.
The position of mobile users has become highly important information in pervasive computing environments. Indoor localization systems based on Wi–Fi signal strength fingerprinting techniques are widely used in office buildings with an existing Wi–Fi infrastructure. Our previous work has proposed a solution based on exploitation of a FM signal to deal with environments not covered with Wi–Fi signal or environments with only a single Wi–Fi access point. However, a general problem of indoor wireless positioning systems pertains to signal degradation due to the environmental factors affecting signal propagation. Therefore, in order to maintain a desirable level of localization accuracy, it becomes necessary to perform periodic calibrations of the system, which is either time consuming or requires dedicated equipment and expert knowledge. In this paper, we present a comparison of FM versus Wi–Fi positioning systems and a combination of both systems, exploiting their strengths for indoors positioning. We also address the problem of recalibration by introducing a novel concept of spontaneous recalibration and demonstrate it using the FM localization system. Finally, the results related to device orientation and localization accuracy are discussed.  相似文献   
62.
This paper presents a tunable content-based music retrieval (CBMR) system suitable the for retrieval of music audio clips. The audio clips are represented as extracted feature vectors. The CBMR system is expert-tunable by altering the feature space. The feature space is tuned according to the expert-specified similarity criteria expressed in terms of clusters of similar audio clips. The main goal of tuning the feature space is to improve retrieval performance, since some features may have more impact on perceived similarity than others. The tuning process utilizes our genetic algorithm. The R-tree index for efficient retrieval of audio clips is based on the clustering of feature vectors. For each cluster a minimal bounding rectangle (MBR) is formed, thus providing objects for indexing. Inserting new nodes into the R-tree is efficiently performed because of the chosen Quadratic Split algorithm. Our CBMR system implements the point query and the n-nearest neighbors query with the O(logn) time complexity. Different objective functions based on cluster similarity and dissimilarity measures are used for the genetic algorithm. We have found that all of them have similar impact on the retrieval performance in terms of precision and recall. The paper includes experimental results in measuring retrieval performance, reporting significant improvement over the untuned feature space.  相似文献   
63.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
64.
Jeremic A  Jin Cho W  Jena BP 《Ultramicroscopy》2006,106(8-9):674-677
Secretion is one of the most fundamental cellular processes. Porosomes have been demonstrated as the universal secretory machinery in cells. Earlier studies determine the presence of a number of proteins in porosomes, among them the N- and P/Q-type calcium channels, actin, syntaxin-1, synaptotagmin-1, vimentin, the N-ethylmaleimide-sensitive factor (NSF), the chloride channel CLC-3, and the alpha subunit of the heterotrimeric GTP-binding protein G(o). Studies demonstrate that t-SNAREs localize at the base of porosomes, and directly interact with calcium channels. In the present study, we demonstrate that Syntaxin-1 co-localizes with cholesterol in solubilized synaptosomal membrane preparations. Depletion of cholesterol, results in the dissociation of both Syntaxin-1 and N-type calcium channel from neuronal porosomes. Thus, cholesterol participates as an integral component of the neuronal porosome complex, and is required for its stability.  相似文献   
65.
    
In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek UltimateASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy OneAEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self‐etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin‐22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied.  相似文献   
66.
Nanostructural TiO2/modified multi-wall carbon nanotubes photocatalysts were prepared by hydrolysis of Ti(iso-OC3H7)4 providing chemical bonding of anatase TiO2 nanoparticles onto oxidized- or amino-functionalized multi-wall carbon nanotubes (MWCNT). The processes of functionalization of the MWCNT and the deposition of TiO2 influence the photocatalytic activity of the synthesized nanocomposites. The phase composition, crystallite size, and the structural and surface properties of the obtained TiO2/modified-MWCNT nanocomposite were analyzed from XRD, FEG-SEM, TEM/HRTEM and FTIR data, as well low temperature N2 adsorption. In the photocatalytic study, the TiO2/oxidized-MWCNT catalyst showed the highest and the TiO2/amino functionalized-MWCNT catalysts somewhat lower degradation rates, indicating that the enhancement of photocatalysis was supported by the more effective electron transfer properties of the oxygen- than amino-containing functional groups, which support the efficient charge transportation and separation of the photogenerated electron-hole pairs.  相似文献   
67.
68.
CdSe/CdS semiconductor nanocrystal heterostructures are currently of high interest for the peculiar electronic structure offering unique optical properties. Here, we show that nanorods and tetrapods made of such material combination enable efficient multiexcitonic emission, when the volume of the nanoparticle is maximized. This condition is fulfilled by tetrapods with an arm length of 55 nm and results in a dual emission with comparable intensities from the CdS arms and CdSe core. The relative intensities of the dual emission, originating from exciton phase-space filling and reduced Auger recombination, can be effectively modulated by the photon fluence of the pump laser. The results, obtained under steady-state detection conditions, highlight the properties of tetrapods as multiexciton dual-color emitters.  相似文献   
69.
70.
Solid-state nanopores have been gaining popularity in nano-biotechnology for single molecule detection, in particular for label-free high-throughput DNA sequencing. In order to address the improvement of the resolution/speed trade-off critical in this application, here we present a new two-channel current amplifier tailored for solid-state nanopore devices with integrated tunneling electrodes. The simultaneous detection of ion and tunneling currents provides enhanced molecule tracking capability. We describe the system design starting from a detailed noise analysis and device modeling, highlighting the detrimental role of the conductive silicon substrate and of all the stray capacitive couplings between the electrodes. Given the high input capacitance (0.1–1 nF), the input voltage noise has been carefully minimized choosing a discrete couple of matched low-noise JFETs as input stage, thus achieving an equivalent input noise of 1.5 nV/√Hz (corresponding to a current noise floor of 15 fA/√Hz at 10 kHz). Low-noise performance (11 pA rms noise integrated over a 75 kHz bandwidth) is preserved at a wide bandwidth (300 kHz) and high gain (100 MΩ) thanks to the adoption of an improved integrator/differentiator cascade topology. Furthermore, along with biasing networks and selectable low-pass filters, an AC-coupled channel providing additional gain has been introduced in order to “zoom” in the current signature during pore blockade events. Together with an experimental characterization of the system (and comparison with the noise performance of other instruments), the platform is validated by demonstrating the detection of λ-DNA with 20 nm pores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号