The region of the investigated receptor is situated in the southern part of the Adriatic Sea in the Mediterranean. The measuring station is located on the seashore, which, being considered as a border area, is representative for the qualitative and quantitative estimation of the influence of marine and continental aerosols on the content of major ions in precipitation. In the sampling period, precipitation in the region of the investigated receptor was more abundant during the summer and autumn than during the winter and spring. The most frequent precipitation heights were up to 20 mm, while high precipitation came exclusively from the continental region. The results of the measurements of ions readily soluble in water were used for the differentiation of marine from continental contributions of primary and secondary aerosols to their content in the precipitation. Using PCA, it was shown that main contribution of Cl(-), Na(+) and Mg(2+) came from primary marine aerosols, while the contribution from continental sources was dominant for the content of SO(4)(2-), NO(3)(-), NH(4)(+) and Ca(2+) in the precipitation. The continental origin of Ca(2+) was from a primary source, while SO(4)(2-), NO(3)(-) and NH(4)(+) were representatives of secondary aerosols produced by reactions between acid oxides and alkaline species in the atmosphere, but SO(4)(2-) and NO(3)(-) also exist in the precipitation as free acids. The origin of the trace elements Cd, Cu, Pb and Zn in the precipitation came from anthropogenic emission sources. The results obtained in this work are based on experimental data from 609 samples collected during the period 1995-2000. 相似文献
The objective of this research was to prepare a rockfall susceptibility map. Explorations were conducted in the Dubra?ina River basin (Croatia). The input data included a geological map, an orthophoto and a 1-m digital terrain model (DTM). After a talus inventory was prepared, the seed cell concept was applied to define the rockfall source areas. The contributing factors (predictors) of rockfalls were evaluated by the chi-squared test. The analysis confirmed the following predictors: CORINE land cover, lithology, slope, aspect, distance from a spring, distance from a road, distance from a fault, distance from a stream, and distance from the rock-soil geological boundary. A matrix pairwise comparison of the predictor ratings was used to define the most significant contributing factors. The predictors that affected the susceptibility map in the share of 86.3% were the slope (61.6%), lithology (13.4%), CORINE land cover (6.2%), and distance from the rock-soil geological boundary (5.1%). Two susceptibility maps were prepared: one using all nine contributing factors and another using the four most significant factors. The analysis showed that both maps were good, with the same areas under the receiver operating characteristic (ROC) curves. The map prepared with only four contributing factors can be considered a better map due to its more precise spatial definition of critical areas. It can be concluded that geological map, 1-m DTM and orthophoto provide enough data to prepare reliable rockfall susceptibility map. The application of the bivariate statistical zonation method called the “frequency ratio method” was proven to be successful. This research demonstrates that the application of the seed cell concept can be useful to speed up the process of rockfall source area detections in large research regions.
Stress stability testing represents an important part of the drug development process. It is used as an important tool for the identification of degradation products and degradation pathways, as well as for the assessment of changes in physical form of drug molecules. The impact of excipients on the stability of olanzapine confirms that levels of impurities and degradants are limiting parameters and are therefore used for stability evaluation. The major degradation product of olanzapine was identified as 2-methyl-5,10-dihydro-4H-thieno[2,3-b][1,5]benzodiazepine-4-one (III). The structure of III was determined by using LC-MS, IR and NMR. Compatibility and stress stability results demonstrated that tablet formulations of olanzapine are sensitive to temperature and moisture. In samples protected from moisture, the increase in concentration of III was shown to be highly temperature dependent and the degradation followed zero-order kinetics. In addition, studies of olanzapine with excipients and in formulated tablets revealed polymorphic phase changes in some samples, influenced by a combination of stress temperature and humidity conditions. Polymorphic transitions were monitored using x-ray powder diffraction (XRPD) analysis and exhibited no correlation between the phase change (appearance of a new polymorph) and the degradation process. 相似文献
Nanometric Bi2O3 powder was successfully synthesized by applying the method based on self-propagating room temperature reaction (SPRT) between bismuth nitrates and sodium hydroxide. X-ray powder diffraction (XRPD) and Rietveld's structure refinement method were applied to characterize prepared powder. It revealed that synthesized material is a single phase monoclinic α-Bi2O3 (space group P21/c with cell parameters a = 5.84605(4)Å, b = 8.16339(6) Å, c = 7.50788(6) Å and β = 112.9883(8)). Powder particles were of nanometric size (about 50 nm). Raman spectral studies conformed that the obtained powder is single phase α-Bi2O3. Specific surface area of obtained powder was measured by Brunauer-Emmet-Teller (BET) method. 相似文献
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. 相似文献
A numerical solution for the prediction of the time-dependent potential response of a polymeric-based ion-selective electrode (ISE) is presented. The model addresses short- and middle-term potential drifts that are dependent on changes in concentration gradients in the aqueous sample and organic membrane phase. This work has important implications for the understanding of the real-time response behavior of potentiometric sensors with low detection limits and with nonclassical super-Nernstian response slopes. As a model system, the initial exposure of membranes containing the well-examined silver ionophore O,O' '-bis[2-(methylthio)ethyl]-tert-butylcalix[4]arene was monitored, and the large observed potential drifts were compared to theoretical predictions. The model is based on an approximate solution of the diffusion equation for both aqueous and organic diffusion layers using a numerical scheme (finite difference in time and finite elements in space). The model may be evaluated on the basis of experimentally available parameters and gives time-dependent information previously inaccessible with a simpler steady-state diffusion model. For the cases studied, the model gave a very good correlation with experimental data, albeit with lower than expected diffusion coefficients for the organic phase. This model may address numerous open questions regarding the response time and memory effects of low-detection-limit ion-selective electrodes and for other membrane electrodes where ion fluxes are relevant. 相似文献
The performance of a 4-QAM indoor wireless data communication system with adaptive equalizer is investigated. The effectiveness of using linear and decision-feedback equalizer for Rayleigh and Rician frequency-selective indoor channels is evaluated, and contrasted to the performance of a 4-QAM modem without equalizer. The effects of some important channel and system parameters (multipath spreads up to 200 ns, data rates up to 25 Mbit/s, signaling pulse rolloff factor between 0.5 and 1.0, and additive, white Gaussian noise) on the indoor communication system performance are examined and presented in the paper. The indoor propagation measurements, carried out in a research laboratory, provided data to be used for BER performance assessments of the system with and without equalizer. The performance results based on computer generated channels are then compared with those obtained for measured channel impulse responses. 相似文献
Platinum-group metals (PGMs) have become one of the most sought after rare metals in this modern age of science and they will continue to increase in importance as a result of their advantageous use in clean-air technology. Due to the scarcity of these precious metals, the application of ion exchange processes to recover PGM ions from relatively uncontaminated aqueous solutions, such as produced by the leaching of secondary sources including used automotive catalytic converters and electronic scrap, is becoming an increasingly cost-effective option and hence an important topic for the PGM production industry. This paper provides a general overview of the basic principles and theories relevant to the hydrometallurgical recovery of PGMs using ion exchange resins, along with a review and discussion of the most important factors that affect the separation and purification of PGMs present initially in predominantly ionic state in an aqueous hydrochloric acid solution. It is shown that in these acidic chloride solutions, the current system of choice for the leaching of PGMs, the adsorption behavior of the PGM ions onto chelating ion exchange resins is strongly dependent on the anionic PGM chloro-complex species present. In addition, it is revealed that the main factors affecting this complexation are (i) acidity and chloride ion concentration of the contacting aqueous chloride solution, (ii) “ageing” of the solution, and (iii) temperature of the solution. 相似文献
Accessing pixels in memory is a well-known bottleneck of SIMD (single instruction multiple data) processors in video/imaging. To tackle it, we propose new block and row access modes of parallel on-chip memory subsystem, which enable a higher processing throughput and lower energy consumption than the access modes of the state-of-the-art subsystems. The new access modes significantly reduce the number of on-chip memory accesses, and thereby accelerate one of key video/imaging kernels: sub-pixel block-matching motion estimation. The main idea is to exploit spatial overlaps of blocks/rows accessed for pixel interpolation, which are known at the subsystem design-time, and merge multiple accesses into a single one by accessing somewhat more pixels at a time than with other parallel memories. To avoid the need for a wider, and, therefore, more costly SIMD datapath, we propose new memory read operations that split all pixels accessed at a time into multiple SIMD-wide blocks/rows, in a convenient way for further processing. As a proof of concept, we describe a parametric, scalable, and cost-efficient architecture that supports the new access modes. The architecture is based on a previously proposed set of memory banks with multiple pixels per bank word, and a previously proposed shifted scheme for arranging pixels in the banks. We analytically and experimentally demonstrate advantages of this work on a case study of sub-pixel motion estimation for video frame-rate conversion. The implemented motion estimator processes 2160p video at 60 fps in real time, while clocked at 600 MHz. Compared to the implementations based on the state-of-the-art subsystems, this work enables 40–70 % higher throughput, consumes 17–44 % less energy and has similar silicon area and off-chip memory bandwidth costs. That is 1.8–2.9 times more efficient than the prior art, considering the throughput and all costs, i.e., consumption, area, and off-chip bandwidth. Such a higher efficiency is the result of the new access modes, which reduced the number of on-chip memory accesses by 1.6–2.1 times, and the cost-efficient architecture. 相似文献