全文获取类型
收费全文 | 39843篇 |
免费 | 13015篇 |
专业分类
电工技术 | 733篇 |
综合类 | 2篇 |
化学工业 | 17230篇 |
金属工艺 | 314篇 |
机械仪表 | 718篇 |
建筑科学 | 1719篇 |
矿业工程 | 11篇 |
能源动力 | 880篇 |
轻工业 | 7230篇 |
水利工程 | 290篇 |
石油天然气 | 46篇 |
无线电 | 6987篇 |
一般工业技术 | 11594篇 |
冶金工业 | 572篇 |
原子能技术 | 7篇 |
自动化技术 | 4525篇 |
出版年
2023年 | 9篇 |
2022年 | 41篇 |
2021年 | 314篇 |
2020年 | 2103篇 |
2019年 | 3171篇 |
2018年 | 3092篇 |
2017年 | 3418篇 |
2016年 | 3895篇 |
2015年 | 3969篇 |
2014年 | 3890篇 |
2013年 | 4985篇 |
2012年 | 2696篇 |
2011年 | 2342篇 |
2010年 | 2633篇 |
2009年 | 2520篇 |
2008年 | 2068篇 |
2007年 | 1887篇 |
2006年 | 1657篇 |
2005年 | 1384篇 |
2004年 | 1348篇 |
2003年 | 1306篇 |
2002年 | 1259篇 |
2001年 | 1096篇 |
2000年 | 1068篇 |
1999年 | 450篇 |
1998年 | 43篇 |
1997年 | 37篇 |
1996年 | 20篇 |
1995年 | 9篇 |
1994年 | 14篇 |
1993年 | 18篇 |
1992年 | 11篇 |
1991年 | 16篇 |
1990年 | 9篇 |
1989年 | 3篇 |
1988年 | 4篇 |
1987年 | 6篇 |
1986年 | 8篇 |
1985年 | 7篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1981年 | 6篇 |
1979年 | 7篇 |
1977年 | 4篇 |
1975年 | 2篇 |
1971年 | 5篇 |
1970年 | 2篇 |
1969年 | 3篇 |
1968年 | 2篇 |
1967年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Jean Le Bideau Jean‐Baptiste Ducros Patrick Soudan Dominique Guyomard 《Advanced functional materials》2011,21(21):4073-4078
Herein, the novel concept of a solid‐state electrode materials with ionic‐liquid (IL) properties is presented. These composite materials are a mixture of electroactive matter, an electronic conductor, a solid‐state ionic conductor and a polymeric binder. The approach of a solid‐state ionic conductor combines the high safety of an IL with the nanoconfinement of such a liquid in a mesoporous silica framework, an ionogel, thus leading to a solid with liquid‐like ionic properties. The same ionic conductor is also used as a solid‐state separator to evaluate the properties of our solid‐state electrode materials in all‐solid‐state batteries. Such a concept of a solid‐state electrode material contributes to addressing the challenge of energy storage, which is one of the major challenges of the 21st century. The ionogel, along with its processability, allows a single‐step preparation of the assembly of the solid‐state electrode and solid‐electrolyte separator and can be applied without specific adaptation to present, thick electrodes prepared by the widespread tape‐casting technique. The filling of the electrode porosity by an ionogel is shown by elemental mapping using scanning electron microscopy, and is subsequently confirmed by electrochemical measurements. The ionogel approach is successfully applied without specific adaptation to two state‐of‐the‐art, positive electroactive materials developed for future‐generation lithium‐ion batteries, namely LiFePO4 and LiNi1/3Mn1/3Co1/3O2. 相似文献
992.
Matthias A. Ruderer Shuai Guo Robert Meier Hsin‐Yin Chiang Volker Körstgens Johannes Wiedersich Jan Perlich Stephan V. Roth Peter Müller‐Buschbaum 《Advanced functional materials》2011,21(17):3382-3391
Studies on the influence of four different solvents on the morphology and photovoltaic performance of bulk‐heterojunction films made of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) via spin‐coating for photovoltaic applications are reported. Solvent‐dependent PCBM cluster formation and P3HT crystallization during thermal annealing are investigated with optical microscopy and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and are found to be insufficient to explain the differences in device performance. A combination of atomic force microscopy (AFM), X‐ray reflectivity (XRR), and grazing‐incidence small‐angle X‐ray scattering (GISAXS) investigations results in detailed knowledge of the inner film morphology of P3HT:PCBM films. Vertical and lateral phase separation occurs during spin‐coating and annealing, depending on the solvent used. The findings are summarized in schematics and compared with the IV characteristics. The main influence on the photovoltaic performance arises from the vertical material composition and the existence of lateral phase separation fitting to the exciton diffusion length. Absorption and photoluminescence measurements complement the structural analysis. 相似文献
993.
Simone Fabiano He Wang Claudia Piliego Cherno Jaye Daniel A. Fischer Zhihua Chen Bruno Pignataro Antonio Facchetti Yueh‐Lin Loo Maria Antonietta Loi 《Advanced functional materials》2011,21(23):4479-4486
N,N′‐1H,1H‐perfluorobutyl dicyanoperylenecarboxydiimide (PDIF‐CN2), a soluble and air stable n‐type molecule, undergoes significant reorganization upon thermal annealing after solution deposition on several substrates with different surface energies. Interestingly, this system exhibits an exceptional edge‐on orientation regardless of the substrate chemistry. This preferential orientation is rationalized in terms of strong intermolecular interactions between the PDIF‐CN2 molecules. The presence of a pronounced π–π stacking is confirmed by combining near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS), dynamic scanning force microscopy (SFM) and surface energy measurements. The remarkable charge carrier mobility measured in field‐effect transistors, using both bottom‐ and top‐contact (bottom‐gate) configurations, underlines the importance of strong intermolecular interactions for the realization of high performing devices. 相似文献
994.
Beatrice Paillassa Benoît Escrig Riadh Dhaou Marie‐Laure Boucheret Caroline Bes 《International Journal of Satellite Communications and Networking》2011,29(6):479-500
This paper proposes new transmission schemes for the delivery of satellite services. In the proposed scenarios, mobile terminals are allowed to forward the signal received from the satellite. This scheme provides spatial diversity just like MIMO transmission schemes. Moreover, the coverage area is extended because masked terminals have an additional opportunity to get the service from neighboring terminals. We use the paradigm of cooperative communications to compare the advantages and limitations of several scenarios in hybrid terrestrial/satellite systems. In particular, we study the following basic transmission scheme: in a first time slot, the satellite sends its signal and, in a second time slot, mobile terrestrial terminals are relaying the satellite signal. An analysis framework is proposed and applied to this cooperation scenario at the destination terminal. The framework is modeling the cooperation process and clearly separates the control part from the data user part. The paper outlines the importance of the control part by evaluating the relay selection policy on a basic hybrid satellite/ad hoc system. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
995.
Seyoon Jeong Sung‐Chang Lim Hahyun Lee Jongho Kim Jin Soo Choi Haechul Choi 《ETRI Journal》2011,33(2):145-154
We present a novel video codec for supporting entertainment‐quality video. It has new coding tools such as an intra prediction with offset, integer sine transform, and enhanced block‐based adaptive loop filter. These tools are used adaptively in the processing of intra prediction, transform, and loop filtering. In our experiments, the proposed codec achieved an average reduction of 13.35% in BD‐rate relative to H.264/AVC for 720p sequences. 相似文献
996.
Intratumoral Thermal Reading During Photo‐Thermal Therapy by Multifunctional Fluorescent Nanoparticles 下载免费PDF全文
Elisa Carrasco Blanca del Rosal Francisco Sanz‐Rodríguez Ángeles Juarranz de la Fuente Patricia Haro Gonzalez Ueslen Rocha Kagola Upendra Kumar Carlos Jacinto José García Solé Daniel Jaque 《Advanced functional materials》2015,25(4):615-626
The tremendous development of nanotechnology is bringing us closer to the dream of clinical application of nanoparticles in photothermal therapies of tumors. This requires the use of specific nanoparticles that must be highly biocompatible, efficient light‐to‐heat converters and fluorescent markers. Temperature reading by the heating nanoparticles during therapy appears of paramount importance to keep at a minimum the collateral damage that could arise from undesirable excessive heating. In this work, this thermally controlled therapy is possible by using Nd3+ ion‐doped LaF3 nanocrystals. Because of the particular optical features of Nd3+ ions at high doping concentrations, these nanoparticles are capable of in vivo photothermal heating, fluorescent tumor localization and intratumoral thermal sensing. The successful photothermal therapy experiments here presented highlight the importance of controlling therapy parameters based on intratumoral temperature measurements instead of on the traditionally used skin temperature measurements. In fact, significant differences between intratumoral and skin temperatures do exist and could lead to the appearance of excessive collateral damage. These results open a new avenue for the real application of nanoparticle‐based photothermal therapy at clinical level. 相似文献
997.
Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents 下载免费PDF全文
Michelle A. Chavis Detlef‐M. Smilgies Ulrich B. Wiesner Christopher K. Ober 《Advanced functional materials》2015,25(20):3057-3065
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, solvent vapor annealing in supported thin films of poly(2‐hydroxyethyl methacrylate)‐block‐poly(methyl methacrylate) [PHEMA‐b‐PMMA] by means of grazing incidence small angle X‐ray scattering (GISAXS) is investigated. A spin‐coated thin film of a lamellar block copolymer is solvent vapor annealed to induce microphase separation and improve the long‐range order of the self‐assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents, which are chosen to be preferential for each block, enables selective formation of ordered lamellae, gyroid, hexagonal, or spherical morphologies from a single‐block copolymer with a fixed volume fraction. The selected microstructure is then kinetically trapped in the dry film by rapid drying. This paper describes what is thought to be the first reported case where in situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. 相似文献
998.
Yu‐Ching Lin Yao‐Chuan Tsai Takahito Ono Pan Liu Masayoshi Esashi Thomas Gessner Mingwei Chen 《Advanced functional materials》2015,25(35):5677-5682
Microelectromechanical system (MEMS) actuators essentially have movable silicon structures where the mechanical motion can be activated electronically. The microscanner is one of the most successfully commercialized MEMS devices which are widely used for collecting optical information, manipulating light, and displaying images. While silicon is abundant, it is also brittle and stiff and when microprocessed, defects are not uncommon. These defects result in weakness under torsional stress and this has been the key factor limiting the scanning performance of the microscanner. Here a metallic glass (MG)‐based microscanner is reported with MG as the material for the moving torsion bars. The low elastic modulus, high fracture toughness, and high strength of MG offers, for the first time, an ultralarge rotating angle of 146° with power consumption lowered to the microwatt range, and a smaller driving force and better actuation performance, than conventional single crystal silicon and polycrystalline silicon. The high spatial resolution and large scanning field of the MG‐based microscanner are demonstrated in the tomographic imaging of a human finger. This development of an MG‐based MEMS possibly opens a new field of low‐powered MEMS devices with extreme actuation and enhanced sensing. 相似文献
999.
Hetero‐Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability 下载免费PDF全文
Sung‐Ju Cho Keun‐Ho Choi Jong‐Tae Yoo Jeong‐Hun Kim Yong‐Hyeok Lee Sang‐Jin Chun Sang‐Bum Park Don‐Ha Choi Qinglin Wu Sun‐Young Lee Sang‐Young Lee 《Advanced functional materials》2015,25(38):6029-6040
Forthcoming smart energy era is in strong pursuit of full‐fledged rechargeable power sources with reliable electrochemical performances and shape versatility. Here, as a naturally abundant/environmentally friendly cellulose‐mediated cell architecture strategy to address this challenging issue, a new class of hetero‐nanonet (HN) paper batteries based on 1D building blocks of cellulose nanofibrils (CNFs)/multiwall carbon nanotubes (MWNTs) is demonstrated. The HN paper batteries consist of CNF/MWNT‐intermingled heteronets embracing electrode active powders (CM electrodes) and microporous CNF separator membranes. The CNF/MWNT heteronet‐mediated material/structural uniqueness enables the construction of 3D bicontinuous electron/ion transport pathways in the CM electrodes, thus facilitating electrochemical reaction kinetics. Furthermore, the metallic current collectors‐free, CNF/MWNT heteronet architecture allows multiple stacking of CM electrodes in series, eventually leading to user‐tailored, ultrathick (i.e., high‐mass loading) electrodes far beyond those accessible with conventional battery technologies. Notably, the HN battery (multistacked LiNi0.5Mn1.5O4 (cathode)/multistacked graphite (anode)) provides exceptionally high‐energy density (=226 Wh kg?1 per cell at 400 W kg?1 per cell), which surpasses the target value (=200 Wh kg?1 at 400 W kg?1) of long‐range (=300 miles) electric vehicle batteries. In addition, the heteronet‐enabled mechanical compliance of CM electrodes, in combination with readily deformable CNF separators, allows the fabrication of paper crane batteries via origami folding technique. 相似文献
1000.
Jihye Son Yong‐Sung Eom Kwang‐Seong Choi Haksun Lee Hyun‐Cheol Bae Jin‐Ho Lee 《ETRI Journal》2015,37(3):523-532
Recently, we have witnessed the gradual miniaturization of electronic devices. In miniaturized devices, flip‐chip bonding has become a necessity over other bonding methods. For the electrical connections in miniaturized devices, fine‐pitch solder bumping has been widely studied. In this study, high‐volume solder‐on‐pad (HV‐SoP) technology was developed using a novel maskless printing method. For the new SoP process, we used a special material called a solder bump maker (SBM). Using an SBM, which consists of resin and solder powder, uniform bumps can easily be made without a mask. To optimize the height of solder bumps, various conditions such as the mask design, oxygen concentration, and processing method are controlled. In this study, a double printing method, which is a modification of a general single printing method, is suggested. The average, maximum, and minimum obtained heights of solder bumps are 28.3 μm, 31.7 μm, and 26.3 μm, respectively. It is expected that the HV‐SoP process will reduce the costs for solder bumping and will be used for electrical interconnections in fine‐pitch flip‐chip bonding. 相似文献