The proposed system portrays the application space examination of a diverse cryptosystem processor with dynamic reconfiguration abilities. It is appropriate to a variety of signal processing application domains namely telecommunications, image processing, video coding and cryptographic processing. To differentiate between application spaces of the processor, the performance is correlated with cutting edge devices, taking ability to program, energy efficiency and computational potential as the important factors. In general the conventional method of computation is processed by means of Virtual Secure Circuit (VSC) on Advanced Encryption Standard (AES) and performance of the device Field Programmable Gate Array (FPGA) after implementation is analyzed in terms of delay and throughput. In the conventional method area overhead and power consumption are less where as the architecture lags in performance and throughput. It has been overcome through the fully parallel pipelined Architecture of the VSC on AES which outperforms the existing method in terms of performance and throughput. The energy efficiency and performance are considerably more important than processor that are used for general purpose, while still preserving a Convenient approach of programming that mainly bank on software oriented languages. The exploit of VSC based AES is to formulate the cryptographic processor held against Side Channel Attacks like attacks based on power supply and electromagnetic signals. Then the experimental result shows the promising outcomes when compared to previous methods.
Ultraviolet absorption spectroscopy, has an immense potential for characterization of aromatic hydrocarbons in distillate petroleum fractions. The second derivative ultraviolet spectroscopy has improved the understanding of complex aromatic structures, such as polynuclear aromatics, which are present in gas oil fractions. Normal and second derivative ultraviolet spectroscopy of gas oils and their separated fractions are discussed in detail and conclusions are drawn regarding mono-di-and polynuclear aromatics in various gas oils. 相似文献
In this paper, a modular and scalable all-optical packet switch (AOPS) is proposed. The range of its capacity can be easily scaled from gigabit per second to multi-terabits per second. Due to its broadcast-and-select property, the proposed AOPS is capable of performing a multicast function. By taking the advantage of wavelength division multiplexing (WDM), this architecture can provide the best network performance using a limited number of optical fiber delay lines as buffers. To perform the header replacement function, a novel all-optical header replacement unit (HRU) is introduced to be integrated with the switching function. The proposed HRU is shared by all the inputs which provides cost advantages. In addition, we present a generic control scheme for the proposed AOPS. To implement the function of the AOPS, two possible approaches, based on the design of wavelength conversion pools (WCPs), are presented and their cascadability performances are compared. Our simulations show that the proposed AOPS with an arrayed waveguide grating (AWG) based WCP provides better cascadability performance than the one with a star coupler based WCP. We conclude that, based on the status of current optical and electronic technologies, the proposed architecture is feasible to be implemented, and can be a good candidate for future packet switching solutions. 相似文献
The electrochemical spark machining (ECSM) process has been proved as a potential process for machining of low machinability high-strength electrically non-conducting materials, but the mechanism of material removal during the process, by and large, is not yet understood. In the present work, the electrochemical discharge is modelled as a phenomenon similar to that which occurs in arc discharge valves. This phenomenon is used to explain various experimental results, on the basis of circuit and arc discharge valve characteristics. The spark energy and the approximate order of hydrogen gas bubble diameter are computed by the proposed valve theory. Material removal rate is evaluated by modelling the problem as a 3-D unsteady state heat conduction problem. The problem is solved by the finite element method to compute the temperature distribution which is post-processed for estimating material removal per spark, overcut obtained in the machined cavity, and attainable maximum penetration depth. The conclusion drawn is that the application of valve theory to the ECSM process seems to be realistic. Estimated material removal rate, overcut and maximum penetration depth show a good agreement with experimental findings. 相似文献
The building construction industry consumes a large amount of resources and energy and, owing to current global population growth trends, this situation is projected to deteriorate in the near future. Buildings consume approximately 40 percent of total global energy: during the construction phase in the form of embodied energy and during the operation phase as operating energy. Embodied energy is expended in the processes of building material production (mining and manufacture), on-site delivery, construction and assembly on-site, renovation and final demolition. Recent studies have considered the significance of embodied energy inherent in building materials, with a specific focus on this fraction of sequestered energy. Current interpretations of embodied energy are quite unclear and vary greatly, and embodied energy databases suffer from problems of variation and incomparability. Furthermore, there is no reliable template, standard or protocol regarding embodied energy computations that could address these problems in embodied energy inventories. This paper focuses on the analysis of existing literature in order to identify differing parameters so that development of a consistent and comparable database can be facilitated. 相似文献
Peanut allergy can be life‐threatening and is mediated by allergen‐specific immunoglobulin E (IgE) antibodies. Investigation of IgE antibody binding to allergenic epitopes can identify specific interactions underlying the allergic response. Here, we report a surface plasmon resonance imaging (SPRi) immunoassay for differentiating IgE antibodies by epitope‐resolved detection. IgE antibodies were first captured by magnetic beads bearing IgE ?‐chain‐specific antibodies and then introduced into an SPRi array immobilized with epitopes from the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2). Differential epitope responses were achieved by establishing a binding environment that minimized cross‐reactivity while maximizing analytical sensitivity. IgE antibody binding to each Ara h2 epitope was distinguished and quantified from patient serum samples (10 μL each) in a 45 min assay. Excellent correlation of Ara h2‐specific IgE values was found between ImmunoCAP assays and the new SPRi method. 相似文献
We carried out a comparative study on the electrical and magnetodielectric properties of polycrystalline BiFeO3, Bi0.9Ca0.1FeO2.95, Bi0.9Ba0.05Ca0.05FeO2.95, and Bi0.9Ba0.1FeO2.95 ceramics. The two dielectric anomalies, near 25 K and 281 K, are observed for BiFeO3. Interestingly, the anomaly near 25 K shifts towards a higher temperature above 60 K with Ca and/or Ba doping, attributed to the doping induced chemical pressure. In addition, the room temperature switchable magnetodielectric effect is witnessed for the doped BiFeO3 compounds, due to the quadratic magnetoelectric coupling. This indicates the improved magnetoelectric coupling in BiFeO3 with the Ca and Ba doping. This is essentially due to the enhanced magnetic ordering and reduced leakage current in BiFeO3 after the doping. 相似文献