首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   16篇
电工技术   1篇
化学工业   54篇
金属工艺   4篇
机械仪表   3篇
建筑科学   10篇
能源动力   15篇
轻工业   38篇
水利工程   2篇
无线电   19篇
一般工业技术   32篇
冶金工业   6篇
原子能技术   1篇
自动化技术   32篇
  2023年   3篇
  2022年   20篇
  2021年   29篇
  2020年   19篇
  2019年   17篇
  2018年   14篇
  2017年   24篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   21篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
31.
The water-reducing agent better known as superplasticizer is a recent development. A number of base materials have been used for the development of such water-reducing agents which can act better than ordinary plasticizers in concrete. The sulphonated salts of melamine, napthalene, lignin, hydroxycarboxylic acids and hydroxylated polymers are some typical compounds. Recently cashew nutshell liquid obtained from a natural product waste as a thick black phenolic compound has been converted into a water-reducing agent. This paper describes the results obtained on its effectiveness in influencing the rheological properties of flow, viscosity, particle size distribution, etc, of cement particles in hydrating cements and the water-reducing capabilities in cement mortars and concretes.  相似文献   
32.
33.
34.
This study presents the fabrication and characterization of novel NiO/TiO2 composite nanofibers and their antibacterial activity. The utilized NiO/TiO2 composite nanofibers were prepared by electrospinning of a sol–gel composed of nickel nitrate hexahydrate, titanium isopropoxide and poly(vinyl acetate). The obtained electrospun nanofiberous mat was vacuum dried at 80 °C and then calcined at 600 °C in air for 2 h. The physicochemical properties of the synthesized nanofibers were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis and transmission electron microscopy. The antibacterial activity was tested against four common foodborne pathogenic bacteria viz., Staphylococcus aureus, Escherichia coli, Salmonella typhimurium and Klebsiella pneumoniae by minimum inhibitory concentration (MIC) method taking five different concentrations (5–45 μg/ml). Our investigation reveals that the lowest concentration of NiO/TiO2 composite solution inhibiting the growth of tested strains was found to be 5 μg/ml. TEM analysis demonstrated that the exposure of the selected microbial strains to the composite nanofibers led to disruption of cell membranes and depressed the activity of some membranous enzymes, which caused bacteria to die eventually. Furthermore, the results illustrate that the combination of NiO and TiO2 can be synergistic and resulted in superior antimicrobial activity of NiO/TiO2 composite nanofibers. To sum up, novel NiO/TiO2 composite nanofibers that possess large surface-to-volume ratio with excellent antimicrobial activity were fabricated that can be used to inhibit the microbial growth associated with food stuff.  相似文献   
35.
A series of monolayer protected gold nanoparticle colloidal solutions have been prepared with average sizes in the 2–15nm range. If a drop of such a colloidal suspension is deposited onto a Si3N4 substrate and the solvent allowed to evaporate, the particles have a tendency to self-assemble into monolayer rafts with varying degrees of structural order depending on the initial mono-dispersity of the particles. The thermal stability of these selfassembled gold nanoparticle rafts as a function of particle size, heating method, heating rate and ligand identity have been assessed in this study. In-situ TEM studies show that sub-8nm Au nanoparticles on Si3N4 have a tendency to coarsen upon slow heating, whereas those comprised of larger particles exhibit densification. Increasing the heating rate for the smaller particles promoted densification, forcing them to form highly interconnected string-like structures. Finally, rafts of sub-4nm alkanethiol protected Au nanoparticles are shown to sinter spontaneously under ambient conditions at room temperature on the timescale of several months. This unexpected effect may have important implications for the long term structural stability of any device constructed from sub-4nm gold nanoparticles.  相似文献   
36.
The fabrication and characterization of one-dimensional CuO/TiO2 nanofibers with high photocatalytic and antibacterial activities are presented. The CuO/TiO2 nanofibers were prepared by electrospinning of colloid composed of titanium isopropoxide, poly(vinylpyrroliodine) (PVP) and copper nanoparticles and calcination at 700 °C in air for 1 h. The antibacterial activity was tested using Klebsiella pneumoniae as model organism by calculation of the minimum inhibitory concentration (MIC). The obtained CuO/TiO2 nanofibers showed prominent photocatalytic activity under visible light to degrade reactive black5 and reactive orange16 dyes in aqueous solutions and effectively catalyze K. pneumoniae inactivation. The decomposition process of the cell wall and cell membrane was directly observed by TEM analysis after the exposure of the K. pneumoniae to the nanofibers. Interestingly, the introduced photocatalyst can be reused with the same photocatalytic activity. Overall, the combination of CuO and TiO2 can be synergistic and resulted in CuO/TiO2 composite nanofibers having superior photocatalytic and antimicrobial potential to impede K. pneumoniae growth which causes bacterium to die ultimately.  相似文献   
37.
Water Resources Management - Drought is recurrently occurring in many parts of the globe. In contrast to other natural hazards, drought has complex climatic characteristics. Several environmental...  相似文献   
38.
The COVID-19 pandemic has triggered a global humanitarian disaster that has never been seen before. Medical experts, on the other hand, are undecided on the most valuable treatments of therapy because people ill with this infection exhibit a wide range of illness indications at different phases of infection. Further, this project aims to undertake an experimental investigation to determine which treatments for COVID-19 disease is the most effective and preferable. The research analysis is based on vast data gathered from professionals and research journals, making this study a comprehensive reference. To solve this challenging task, the researchers used the HF AHP-TOPSIS Methodology, which is a well-known and highly effective Multi-Criteria Decision Making (MCDM) technique. The technique assesses the many treatment options identified through various research papers and guidelines proposed by various countries, based on the recommendations of medical practitioners and professionals. The review process begins with a ranking of different treatments based on their effectiveness using the HF-AHP approach and then evaluates the results in five different hospitals chosen by the authors as alternatives. We also perform robustness analysis to validate the conclusions of our analysis. As a result, we obtained highly corroborative results that can be used as a reference. The results suggest that convalescent plasma has the greatest rank and priority in terms of effectiveness and demand, implying that convalescent plasma is the most effective treatment for SARS-CoV-2 in our opinion. Peepli also has the lowest priority in the estimation.  相似文献   
39.
CNTs were decorated onto Sr doped ZnO nanoparticles to construct an efficient photocatalyst via a facile sol-gel method. The as-fabricated Sr doped ZnO/CNTs with recyclability exhibits Sr and CNTs content dependent hydrogen evolution activit under visible light illumination. The Sr doped ZnO/CNTs photocatalyst shows the highest hydrogen evolution rate of 2732.2 μmolh?1g?1, which is 33.7 and 2.83 times higher than pure ZnO and Sr doped ZnO photocatalysts, respectively. The improved hydrogen evolution activity of Sr doped ZnO/CNTs is primarily assigned to high surface area, Sr doping and construction of heterojunction, which can extend the light absorption, decrease the optical band gap and improve the charge separation. Moreover, the underlying photocatalytic mechanism is proposed on the basis of Mott-Schottky study and explains the interfacial charge transfer process from ZnO to CNTs and Sr. This work open new strategies to synthesize CNTs based nanocomposite for hydrogen evolution.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号