首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   9篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   137篇
金属工艺   6篇
机械仪表   10篇
建筑科学   8篇
矿业工程   4篇
能源动力   21篇
轻工业   10篇
石油天然气   3篇
无线电   16篇
一般工业技术   109篇
冶金工业   2篇
原子能技术   12篇
自动化技术   37篇
  2023年   3篇
  2022年   18篇
  2021年   22篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   14篇
  2013年   22篇
  2012年   27篇
  2011年   26篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   19篇
  2006年   15篇
  2005年   22篇
  2004年   22篇
  2003年   13篇
  2002年   14篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1967年   1篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
291.
The hydrostatic pressure-induced effect on the massive creation of “new” defects in CzSi with oxygen-related defects introduced by implantation of oxygen (at E?200 keV and doses D?1×1018 cm−2) and subsequent processing at up to 1500 K, is investigated in this work. The diamond anvil cell method (DAC) allows to carry out in situ investigations of structure, phase transitions and properties at high pressures (HP). Such a device was used for obtaining experimental absorption spectra of SiSiOx sample in the DAC at hydrostatic pressure up to 20 GPa.  相似文献   
292.
Photoluminescence, surface photovoltage spectroscopy and high-resolution characterization methods (Atomic Force Microscopy, Scanning Electron Microscopy, X-ray spectroscopy and DC conductivity) are applied to nanostructured Hydroxyapatite (HAp) bioceramics and allowed to study electron (hole) energy states spectra of the HAp and distinguish bulk and surface localized levels. The measured trap spectra show strong sensitivity to preliminary heat treatment of the ceramics. It is assumed that found deep electron (hole) charged states are responsible for high bioactivity of the HAp nanoceramics.  相似文献   
293.
294.
Interaction of certain inorganic and organic compounds with activated carbon and the effect of such interaction on open circuit potential of activated carbon were studied. Open circuit potential shifts were observed for an overwhelming majority of the substances and brands of activated carbons investigated. Both negative and positive potential shifts were observed. It was shown that open circuit potential shifts for organic substances depend on degree of coverage of the activated carbon surface. Whereas adsorption of investigated organic compound on activated carbon led to positive potential shifts, desorption of adsorbates from the activated carbon surface led to potential shifts in the opposite direction. Furthermore, time dependencies of open circuit potential shifts were similar for different carbon brands. The magnitude of the shifts depended on the adsorbate, adsorption activity of the adsorbent, and the steric configuration of potential-determinative pores and adsorbate molecules.  相似文献   
295.
This study tests a whole-lake experiment to reduce the bioaccumulation of radiocaesium (137Cs) in fish in lakes contaminated by the Chernobyl accident. In many lakes in the Chernobyl contaminated areas, radiocaesium activity concentrations in fish are still significantly higher (up to 100 times in some species) than acceptable limits for human consumption. Estimates of the long-term rate of decline of 137Cs in fish in these regions, in the absence of countermeasures, show that radioactivity in fish in some lakes may remain above acceptable consumption limits for a further 50-100 years from the present date. In February 1998 we applied 15 t of potassium chloride to Lake Svyatoe, Kostiukovichy. The addition of potassium chloride fertilizer to the lake resulted in a decrease in activity concentration of 137Cs to approximately 40% of pre-countermeasure values in a number of different fish species. In contrast to Lake Svyatoe, 137Cs activity concentrations in fish from four control lakes showed no systematic decrease over the study period. Simplified models for transfers of 137Cs in lakes successfully 'blind' predicted the changes in 137Cs in water and fish resulting from this major alteration of the potassium concentration of the lake. The experiment represents the first test of a predictive model for the dynamics of radiocaesium in response to a major perturbation in potassium (its major competitor ion) in a whole lake ecosystem.  相似文献   
296.
297.
The article discusses novel research results on combustion features of high-density Н22 mixtures (ρH2 = 0.70–1.89 mol/dm3, ρO2 = 0.32–0.81 mol/dm3) diluted with nitrogen, carbon dioxide, or water vapor (from 46 to 76% mol.) at the uniform heating (1 K/min) of tubular reactor. Based on time dependencies of temperature increment in the reaction mixtures caused by the heat release during oxidation of H2, it is found that the self-ignition temperature of Н22/N2 and Н22/H2O mixtures is by ≈ 30 K lower than that of the Н22/СО2 mixture. Unlike combustion of H2 in the N2 medium, in the CO2 and H2O media a chain-thermal explosion is observed at a certain concentration of reagents. The influencing mechanisms of diluents on the H2 oxidation dynamics, as well as the contribution of homogeneous and heterogeneous reactions in the heat release are revealed. It is established that high heat capacity of H2/O2/CO2 mixture, chemical interaction between its components, and presence of CO2 molecules adsorbed on the reactor inner surface, are the factors determining the H2 oxidation dynamics in CO2 medium. At oxidation of H2 in the H2O medium, the process takes place against the background of water evaporation and, as a consequence, is characterized by increased heat capacity and thermal conductivity of the H2/O2/H2O reaction mixture.  相似文献   
298.
299.
This paper formulates the joint redundancy and replacement schedule optimization problem generalized to multistate system, where the system and its components have a range of performance levels. Multistate system reliability is defined as the ability to maintain a specified performance level. The system elements are chosen from a list of available products on the market and the number of such elements is determined for each system component. Each element is characterized by its capacity, reliability and cost. The reliability of a system element is characterized by its lifetime distribution with the hazard rate, which increases with time. It is specified as the expected number of failures during different time intervals. The optimal system structure and the number of element replacements during the study period are defined as those which provide the desired level of system reliability with minimal sum of costs of capital investments, maintenance and unsupplied demand caused by failures. A universal generating function technique is applied to evaluate the multistate system reliability. A genetic algorithm is used as an optimization technique. Examples of determination of the optimal system structure and replacement schedule are provided.  相似文献   
300.
Apurinic/apyrimidinic (AP) endonucleases are the key DNA repair enzymes in the base excision repair (BER) pathway, and are responsible for hydrolyzing phosphodiester bonds on the 5′ side of an AP site. The enzymes can recognize not only AP sites but also some types of damaged bases, such as 1,N6-ethenoadenosine, α-adenosine, and 5,6-dihydrouridine. Here, to elucidate the mechanism underlying such a broad substrate specificity as that of AP endonucleases, we performed a computational study of four homologous APE1-like endonucleases: insect (Drosophila melanogaster) Rrp1, amphibian (Xenopus laevis) APE1 (xAPE1), fish (Danio rerio) APE1 (zAPE1), and human APE1 (hAPE1). The contact between the amino acid residues of the active site of each homologous APE1-like enzyme and the set of damaged DNA substrates was analyzed. A comparison of molecular dynamic simulation data with the known catalytic efficiency of these enzymes allowed us to gain a deep insight into the differences in the efficiency of the cleavage of various damaged nucleotides. The obtained data support that the amino acid residues within the “damage recognition” loop containing residues Asn222–Ala230 significantly affect the catalytic-complex formation. Moreover, every damaged nucleotide has its unique position and a specific set of interactions with the amino acid residues of the active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号