首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   11篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   137篇
金属工艺   6篇
机械仪表   10篇
建筑科学   8篇
矿业工程   4篇
能源动力   21篇
轻工业   10篇
石油天然气   3篇
无线电   16篇
一般工业技术   109篇
冶金工业   2篇
原子能技术   12篇
自动化技术   37篇
  2023年   3篇
  2022年   18篇
  2021年   22篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   14篇
  2013年   22篇
  2012年   27篇
  2011年   26篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   19篇
  2006年   15篇
  2005年   22篇
  2004年   22篇
  2003年   13篇
  2002年   14篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1967年   1篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
81.
The muscular layer of the uterus (myometrium) undergoes profound changes in global excitability prior to parturition. Here, a mathematical model of the myocyte network is developed to investigate the hypothesis that spatial heterogeneity is essential to the transition from local to global excitation which the myometrium undergoes just prior to birth. Each myometrial smooth muscle cell is represented by an element with FitzHugh–Nagumo dynamics. The cells are coupled through resistors that represent gap junctions. Spatial heterogeneity is introduced by means of stochastic variation in coupling strengths, with parameters derived from physiological data. Numerical simulations indicate that even modest increases in the heterogeneity of the system can amplify the ability of locally applied stimuli to elicit global excitation. Moreover, in networks driven by a pacemaker cell, global oscillations of excitation are impeded in fully connected and strongly coupled networks. The ability of a locally stimulated cell or pacemaker cell to excite the network is shown to be strongly dependent on the local spatial correlation structure of the couplings. In summary, spatial heterogeneity is a key factor in enhancing and modulating global excitability.  相似文献   
82.
Adhesive behavior in blends of high molecular weight poly(N-vinyl pyrrolidone (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) has been studied using a 180° peel test as a function of PVP-PEG composition and water vapor sorption. Hydrophilic pressure-sensitive adhesives are keenly needed in various fields of contemporary industry and medicine, and the PVP-PEG blends, pressure-sensitive adhesion has been established to appear within a narrow composition range, in the vicinity of 36 wt% PEG, and it is affected by the blend hydration. Both plasticizers, PEG and water, behave as tackifiers (enhancers of adhesion) in the blends with glassy PVP. However, PEP alone is shown to account for the occurrence of adhesion, and the tackifying effect of PEG is appreciably stronger than that of sorbed water. Blend hydration enhances adhesion for the systems that exhibit an apparently adhesive type of debonding from a standard substrate (at PEG content less than 36 wt%), but the same amounts of sorbed water are also capable of depressign adhesion in the PEG-overloaded blends, where a cohesive mechanism of adhesive joint failure is typical. The PVP-PEG blend with 36% PEG couples both the adhesive and cohesive mechanisms of bond rupture (i.e., the fibrillation of adhesive polymer under debonding force and predominantly adhesive locus of failure). Blend hydration effect on adhesion has been found to be reversible. The micromechanics of adhesive joint failure for PVP-PEG hydrogels involves the fibrillation of adhesive polymer, followed by fibrils stretching and fracturing as their elongation attains 1000-1500%. Peel force to rupture the adhesive bond of PVP-PEG blends increases with increasing size of the tensile deformation zone, increasing cohesive strength of the material, and increasing tensile compliance of the material, obeying the well-known Kaelble equation, derived originally for conventional rubbery pressure-sensitive adhesives. The major deformation mode upon peeling the PVP-PEG adhesive from a standard substrate is extension, and direct correlations have been established between the composition behaviour of peel strength and that of the total work of viscoelastic strain to break the PVP-PEG films under uniaxial drawing. As a result of strong interfacial interaction with the PET backing film, the PVP-PEG adhesive has a heterogeneous two-layer structure, where different layers demonstrate dissimilar adhesive characteristics.  相似文献   
83.
The polarization switching processes of ferroelectric polycrystalline Sn2P2S6 films on Al substrates were studied. The effect of full reverse spontaneous switching after the influence of a repolarizing pulse on the prepoled sample was investigated. This opens the way for making the ferroelectric memory devices with rapid nondestructive readout.  相似文献   
84.
85.
The nitrogen‐rich energetic compound 5‐amino‐3,4‐dinitropyrazole (5‐ADP) was investigated using complementary experimental techniques. X‐ray diffraction indicates the strong intermolecular hydrogen bonding in 5‐ADP crystals. Compound exhibits low impact sensitivity (23 J) and insensitivity to friction. The activation energy of thermolysis determined to be 230±5 kJ mol−1 from DSC measurements. Accelerating rate calorimetry indicates the lower thermal stability (173 °C) of 5‐ADP than that of RDX, which is probably the main concern about using this compound. 5‐ADP also exhibits good compatibility with common energetic materials (viz. TNT, RDX, ammonium perchlorate), including an active binder. The burning rate of 5‐ADP monopropellant is higher than that of benchmark HMX, while the pressure exponent 0.51±0.04 is surprisingly low. Addition of ammonium perchlorate does not affect the pressure exponent of 5‐ADP, while the burning rate increases. The 5‐amino‐3,4‐dinitropyrazole exhibits a notable combination of combustion performance, low sensitivity, and good compatibility, which renders it as a promising energetic material.  相似文献   
86.
Smolovich AM 《Applied optics》2006,45(30):7871-7877
The principles of wavefront reconstruction by means of a geometric-optical reflection of radiation from surfaces of interference fringe maxima are discussed. The optical elements based on these principles should be achromatic. Two methods of the optical elements design are proposed. The first method is a direct holographic recording of the interference fringe structure containing only a few periods, and the second method is a combination of the measurement of the object wavefront shape with digital holography methods.  相似文献   
87.
In hadron therapy the spectra of secondary particles can be very broad in type and energy. The most accurate calculations of tissue equivalent (TE) absorbed dose and biological effect can be achieved using Monte Carlo (MC) simulations followed by the application of an appropriate radiobiological model. The verification of MC simulations is therefore an important quality assurance (QA) issue in dose planning. We propose a method of verification for MC dose calculations based on measurements of either the integral absorbed dose or the spectra of deposited energies from single secondary particles in non-TE material detectors embedded in a target of interest (phantom). This method was tested in boron neutron capture therapy and fast neutron therapy beams.  相似文献   
88.
This study demonstrates that, besides sulfur deprivation, sustained H2 photoproduction in Chlamydomonas reinhardtii cultures can be generated by incubating algae under phosphorus-deprived (−P) conditions. However, phosphorus deficiency in algal cells could not be obtained by resuspension of algae in −P medium, evidently due to a significant reserve of phosphorus in cells. In this study, phosphorus deficiency was accomplished by inoculating the washed algae into the −P medium at low initial cell densities (below 2 mg Chl l−1). After the initial growth period, where cells utilize intracellular phosphorus, algae established anaerobic environment followed by the period of H2 photoproduction. The maximum H2 output (∼70 ml l−1) was obtained in cultures with the initial Chl content ∼1 mg l−1. Cultures with Chl above 2 mg l−1 did not produce H2 gas. The physiological response of algal cultures to phosphorus deprivation demonstrated significant similarities with the response of algae to sulfur depletion.  相似文献   
89.
90.
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号