In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported,to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions.This novel structure offers low barrier height at the source and offers high ON-state current.The ION/IoFF of ISE-CGAA-SB-MOS-FET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade).However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate,dual metal gate,single metal gate with ISE,and dual metal gate with ISE has been presented.The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design.The numerical simulation is performed using the ATLAS-3D device simulator. 相似文献
Wireless Personal Communications - The efficient management of resource sharing plays a crucial role in the cloud execution environment. The constraints such as heterogeneity and dynamic nature of... 相似文献
An analytical model of Al0.15Ga0.85N/GaN modulation doped field effect transistor (MODFET), which uses an accurate velocity field relationship and incorporates the dominant effect of piezoelectric polarization induced charge at the AlGaN/GaN interface is presented. The effect of traps has also been taken into account. The calculated DC characteristics are in excellent agreement with the measured data. The model is extended to predict the microwave performance of the device. High current levels (>500 mA/mm), large transconductance (160.83 mS/mm) and a high cutoff frequency (9.6 GHz) have been achieved analytically and are in close agreement with the experimental data. 相似文献
A grounded lamination gate (GLG) structure for high-/spl kappa/ gate-dielectric MOSFETs is proposed, with grounded metal plates in the spacer oxide region. Two-dimensional device simulations performed on the new structure demonstrate a significant improvement with respect to the threshold voltage roll-off with increasing gate-dielectric constant (due to parasitic internal fringe capacitance), keeping the equivalent oxide thickness same. A simple fabrication procedure for the GLG MOSFET is also presented. 相似文献
This paper analyzes the effect of temperature variation on various device architectures i.e. Insulated Shallow Extension Silicon On Nothing (ISESON), ISE and SON MOSFET using ATLAS 3D device simulator for 45 nm gate length. The simulation results obtained with the ATLAS has been validated by comparing it with reported experimental data of SON MOSFET. The simulation results demonstrate that out of three device designs, the ISESON MOSFET is the most suitable device for high speed, low voltage and high temperature applications. The integration of ISE and SON onto the conventional bulk MOSFET leads to the enhancement in analog device performance in terms of device efficiency (gm/Ids), device gain (gm/gd), output resistance (Rout) and early voltage (Vea). 相似文献
Wireless Personal Communications - The orthogonal frequency division multiplexing (OFDM) is the most encouraging multi-carrier modulation system chosen for the high data rates but the objective is... 相似文献
Silicon wafers and dies are made of single crystalline material in semiconductor applications which must withstand high stresses within electronic packages. The apparent mechanical strength of single-crystalline Si depends on process induced defects. Mechanical bending tests are the simplest way to obtain the strength of Si dies and wafers and have been used for many years throughout the industry. Some of the bending tests, such as the 3-point-bend (3PB) test, provide a convoluted contribution from both the defects on die surface (caused by backgrinding and mishandling) and defects on die edges (caused by sawing or dicing). However, the ball-on-ring (BOR) test provides a way to single out the contribution of backside grinding defects to the die strength. This paper compares the results of both 3PB and BOR tests on a number of backgrinding and dicing processes. The die strength of the 3PB test is consistently less than that of the BOR test due to the fact that the edge defects are under tension for 3PB tests but not for BOR. It is demonstrated that the BOR test is a good method for backgrinding process optimization. Due to the intrinsic scattering nature of the strength data, a Weibull-based probabilistic mechanics approach is the method of choice to present the data. 相似文献
Speed control of a DC motor has always been a challenge because of its variable torque. But it becomes more challenging when noise enters the system at its input. Therefore, there is a need of more advanced controllers. In this paper, a multi-resolution proportional integral derivative (MRPID) controller has been proposed to be utilized to control the speed of a DC motor. It works well even in the presence of noise as compared to the conventional PID controller. Also, performance of a PID controller deteriorates when nonlinearity or uncertainty arises in the system. This degraded performance can be improved by utilizing the multi-resolution property of wavelets, which decomposes the error signal into various frequency components. Further, wavelet coefficients of these decompositions are used to generate the control signal for controlling speed of a DC motor. In this paper, performances of a MRPID, a fractional order PID (FOPID) and a conventional PID controllers are compared in the presence of noise for speed control of a DC motor. The results obtained using a MRPID controller are observed to be better in terms of improved transient characteristics and disturbance rejection for a DC motor as compared to those obtained with PID and FOPID controllers.
InxGa1−xAs (x=0.25–0.35) grown at low temperature on GaAs by molecular beam epitaxy is characterized by Hall effect, transmission
electron microscopy, and ultrafast optical testing. As with low temperature (LT) GaAs, the resistivity is generally higher
after a brief anneal at 600°C. High-resolution transmission electron microscopy shows all the as-grown epilayers to be heavily
dislocated due to the large lattice mismatch (2–3%). When the layers are annealed, in addition to the dislocations, precipitates
are also generally observed. As with LT-GaAs, the lifetime shortens as growth temperature is reduced through the range 300–120°C;
also, the lifetime in LT-InxGa1−xAs is generally shorter in as-grown samples relative to annealed samples. Metal-semiconductor-metal photodetectors fabricated
on the material exhibit response times of 1–2 picoseconds, comparable to results reported on GaAs grown at low temperature,
and the fastest ever reported in the wavelength range of 1.0–1.3 μm. 相似文献