首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6458篇
  免费   418篇
  国内免费   11篇
电工技术   58篇
综合类   10篇
化学工业   2825篇
金属工艺   78篇
机械仪表   86篇
建筑科学   263篇
矿业工程   35篇
能源动力   160篇
轻工业   1132篇
水利工程   41篇
石油天然气   35篇
无线电   261篇
一般工业技术   937篇
冶金工业   321篇
原子能技术   15篇
自动化技术   630篇
  2024年   16篇
  2023年   112篇
  2022年   668篇
  2021年   774篇
  2020年   231篇
  2019年   211篇
  2018年   254篇
  2017年   207篇
  2016年   263篇
  2015年   224篇
  2014年   271篇
  2013年   449篇
  2012年   374篇
  2011年   412篇
  2010年   276篇
  2009年   274篇
  2008年   276篇
  2007年   243篇
  2006年   214篇
  2005年   152篇
  2004年   139篇
  2003年   113篇
  2002年   100篇
  2001年   55篇
  2000年   48篇
  1999年   55篇
  1998年   35篇
  1997年   42篇
  1996年   43篇
  1995年   35篇
  1994年   36篇
  1993年   31篇
  1992年   27篇
  1991年   16篇
  1990年   23篇
  1989年   11篇
  1988年   18篇
  1987年   14篇
  1986年   7篇
  1985年   18篇
  1984年   16篇
  1983年   17篇
  1982年   6篇
  1981年   11篇
  1980年   11篇
  1979年   9篇
  1977年   7篇
  1976年   5篇
  1974年   4篇
  1966年   5篇
排序方式: 共有6887条查询结果,搜索用时 0 毫秒
71.
Several hemostatic strategies rely on the use of blood components such as fibrinogen and thrombin, which suffer from high cost and short shelf‐life. Here, a cost‐effective synthetic biomaterial is developed for rapid local hemostasis. Instead of using thrombin, thrombin‐receptor‐agonist‐peptide‐6 (TRAP6) is covalently engineered in polyvinyl alcohol (PVA) hydrogels. Soluble PVA‐TRAP6 is first prepared by covalent attachment of cysteine‐containing TRAP6 onto the backbone of PVA‐norbornenes (PVA‐NB) through photoconjugation. Cytotoxicity studies using C2C12 myoblasts indicate that PVA‐NB and PVA‐TRAP6 are nontoxic. Thromboelastography reveals that hemostatic activity of TRAP6 is retained in conjugated form, which is comparable to free TRAP6 solutions with equal concentrations. A 0.1% PVA‐TRAP6 solution can shorten the clotting time (CT) to ca. 45% of the physiological CT. High platelet‐activating efficiency is further confirmed by platelet aggregation assay and flow cytometry (FACS). For potential clinical applications, TRAP6‐presenting hydrogel particulates (PVA‐TRAP6‐P) are developed for local platelet activation and hemostasis. PVA‐TRAP6‐P is prepared by biofunctionalization of photopolymerized PVA‐NB hydrogel particulates (PVA‐NB‐P) with TRAP6. It is demonstrated that PVA‐TRAP6‐P can effectively shorten the CT to ca. 50%. FACS shows that PVA‐TRAP6‐P can activate platelets to a comparable extent as soluble TRAP6 control. Altogether, PVA‐TRAP6‐P represents a promising class of biomaterials for safe hemostasis and wound healing.  相似文献   
72.
A series of compounds from the tetraceno[2,3‐b]thiophene and the anthra[2,3‐b]thiophene family of semiconducting molecules has been made. Specifically, synthetic routes to functionalize the parent molecules with bromo and then hexyl groups are shown. The bromo‐ and hexyl‐functionalized tetraceno[2,3‐b]thiophene and anthra[2,3‐b]thiophene were characterized in the top‐contact thin‐film transistor (TFT) geometry. They give high mobilities, ranging from 0.12 cm2 V?1 s?1 for αn‐hexylanthra[2,3‐ b]thiophene to as high as 0.85 cm2 V?1 s?1 for α‐bromotetraceno[2,3‐b]thiophene. Notably, grain size increases, going from the shorter anthra[2,3‐b]thiophene core to the longer tetraceno[2,3‐b]thiophene core, with a corresponding increase in mobility. The transition from undesirable 3D to desirable 2D thin‐film growth is explained by the increase in length of the molecule, in this case by one benzene ring, which results in an increase in intralayer interactions relative to interlayer interactions.  相似文献   
73.
We describe the characterization, ferroelectric phase stability and polarization switching in strain‐free assemblies of PbZr0.3Ti0.7O3 (PZT) nanostructures. The 3‐dimensionally ordered macroporous structures present uniquely large areas and volumes of PZT where the microstructure is spatially modulated and the composition is homogeneous. Variable temperature powder X‐ray diffraction (XRD) studies show that the global structure is crystalline and tetragonal at room temperature and undergoes a reversible tetragonal to cubic phase transition on heating/cooling. The measured phase‐transition temperature is 50–60 °C lower than bulk PZT of the same composition. The local ferroelectric properties were assessed using piezoresponse force spectroscopy that reveal an enhanced piezoresponse from the nanostructured films and demonstrate that the switching polarization can be spatially mapped across these structures. An enhanced piezoresponse is observed in the nanostructured films which we attribute to the formation of strain free films, thus for the first time we are able to assess the effects of crystallite‐size independently of internal stress. Corresponding polarization distributions have been calculated for the bulk and nanostructured materials using a direct variational method and Landau‐Ginzburg‐Devonshire (LGD) theory. By correlating local and global characterization techniques we have for the first time unambiguously demonstrated the formation of tetragonal and ferroelectric PZT in large volume nanostructured architectures. With the wide range of materials available that can be formed into such controlled architectures we conclude that this study opens a pathway for the effective studies of nanoscale ferroelectrics in uniquely large volumes.  相似文献   
74.
In transparent optical networks, the optical signal accumulates the effects of all physical impairments present along the path it traverses. The conventional selection of signal paths based on e.g. shortest path routing without considering the signal quality and its association with the physical impairments does not always provide the optimum solution in terms of network performance such as blocking and resource utilization. This paper proposes an impairment constraint based routing algorithm to achieve an optimal combination of physical and networking performance taking into account all physical linear impairments including noise, chromatic and polarization mode dispersion, crosstalk and filter concatenation effects in an integrated approach. The performance of a typical metropolitan area network is examined and the improvement achieved when using the proposed approach compared to the conventional shortest path routing is demonstrated.  相似文献   
75.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   
76.
In IEEE 802.15.4/ZigBee Wireless Sensor Networks (WSNs) a specific node (called the PAN coordinator or sink) controls the whole network. When the network operates in a multi-hop fashion, the position of the PAN coordinator has a significant impact on the performance: it strongly affects network energy consumption for both topology formation and data routing. The development of efficient self-managing, self-configuring and self-regulating protocols for the election of the node that coordinates and manages the IEEE 802.15.4/ZigBee WSN is still an open research issue. In this paper we present a cross-layer approach to address the problem of PAN coordinator election on topologies formed in accordance with the IEEE 802.15.4. Our solution combines the network formation procedure defined at the MAC layer by the IEEE 802.15.4 standard with a topology reconfiguration algorithm operating at the network layer. We propose a standard-compliant procedure (named PAN coordinator ELection – PANEL) to self-configure a IEEE 802.15.4/ZigBee WSN by electing, in a distributed way, a suitable PAN coordinator. A protocol implementing this solution in IEEE 802.15.4 is also provided. Performance results show that our cross-layer approach minimizes the average number of hops between the nodes of the network and the PAN coordinator allowing to reduce the data transfer delay and determining significant energy savings compared with the performance of the IEEE 802.15.4 standard.  相似文献   
77.
N‐type doping of GaAs nanowires has proven to be difficult because the amphoteric character of silicon impurities is enhanced by the nanowire growth mechanism and growth conditions. The controllable growth of n‐type GaAs nanowires with carrier density as high as 1020 electron cm?3 by self‐assisted molecular beam epitaxy using Te donors is demonstrated here. Carrier density and electron mobility of highly doped nanowires are extracted through a combination of transport measurement and Kelvin probe force microscopy analysis in single‐wire field‐effect devices. Low‐temperature photoluminescence is used to characterize the Te‐doped nanowires over several orders of magnitude of the impurity concentration. The combined use of those techniques allows the precise definition of the growth conditions required for effective Te incorporation.  相似文献   
78.
Iron oxide nanoparticles are formidable multifunctional systems capable of contrast enhancement in magnetic resonance imaging, guidance under remote fields, heat generation, and biodegradation. Yet, this potential is underutilized in that each function manifests at different nanoparticle sizes. Here, sub‐micrometer discoidal magnetic nanoconstructs are realized by confining 5 nm ultra‐small super‐paramagnetic iron oxide nanoparticles (USPIOs) within two different mesoporous structures, made out of silicon and polymers. These nanoconstructs exhibit transversal relaxivities up to ≈10 times (r 2 ≈ 835 mm ?1 s?1) higher than conventional USPIOs and, under external magnetic fields, collectively cooperate to amplify tumor accumulation. The boost in r 2 relaxivity arises from the formation of mesoscopic USPIO clusters within the porous matrix, inducing a local reduction in water molecule mobility as demonstrated via molecular dynamics simulations. The cooperative accumulation under static magnetic field derives from the large amount of iron that can be loaded per nanoconstuct (up to ≈65 fg) and the consequential generation of significant inter‐particle magnetic dipole interactions. In tumor bearing mice, the silicon‐based nanoconstructs provide MRI contrast enhancement at much smaller doses of iron (≈0.5 mg of Fe kg?1 animal) as compared to current practice.  相似文献   
79.
Polyethylene terephthalate (PET) is the most widely used polymer in the world. For the first time, the laser-driven integration of aluminum nanoparticles (Al NPs) into PET to realize a laser-induced graphene/Al NPs/polymer composite, which demonstrates excellent toughness and high electrical conductivity with the formation of aluminum carbide into the polymer is shown. The conductive structures show an impressive mechanical resistance against >10000 bending cycles, projectile impact, hammering, abrasion, and structural and chemical stability when in contact with different solvents (ethanol, water, and aqueous electrolytes). Devices including thermal heaters, carbon electrodes for energy storage, electrochemical and bending sensors show this technology's practical application for ultra-robust polymer electronics. This laser-based technology can be extended to integrating other nanomaterials and create hybrid graphene-based structures with excellent properties in a wide range of flexible electronics’ applications.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号