首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3505篇
  免费   201篇
  国内免费   3篇
电工技术   19篇
综合类   6篇
化学工业   949篇
金属工艺   39篇
机械仪表   49篇
建筑科学   206篇
矿业工程   3篇
能源动力   55篇
轻工业   589篇
水利工程   36篇
石油天然气   18篇
无线电   139篇
一般工业技术   517篇
冶金工业   622篇
原子能技术   9篇
自动化技术   453篇
  2023年   26篇
  2022年   85篇
  2021年   131篇
  2020年   56篇
  2019年   87篇
  2018年   95篇
  2017年   84篇
  2016年   114篇
  2015年   85篇
  2014年   153篇
  2013年   221篇
  2012年   184篇
  2011年   266篇
  2010年   179篇
  2009年   153篇
  2008年   183篇
  2007年   154篇
  2006年   168篇
  2005年   104篇
  2004年   119篇
  2003年   100篇
  2002年   84篇
  2001年   57篇
  2000年   57篇
  1999年   49篇
  1998年   44篇
  1997年   44篇
  1996年   51篇
  1995年   43篇
  1994年   37篇
  1993年   33篇
  1992年   40篇
  1991年   36篇
  1990年   47篇
  1989年   32篇
  1988年   35篇
  1987年   29篇
  1986年   22篇
  1985年   22篇
  1984年   31篇
  1983年   12篇
  1982年   24篇
  1980年   15篇
  1979年   23篇
  1978年   13篇
  1977年   8篇
  1975年   13篇
  1974年   6篇
  1971年   6篇
  1969年   6篇
排序方式: 共有3709条查询结果,搜索用时 0 毫秒
81.
82.
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.  相似文献   
83.
Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.  相似文献   
84.
85.
Speaking and singing are activities linked to increased aerosol particle emissions from the respiratory system, dependent on the utilized vocal intensity. As a result, these activities have experienced considerable restrictions in enclosed spaces since the onset of the COVID-19 pandemic due to the risk of infection from the SARS-CoV-2 virus, transmitted by virus-carrying aerosols. These constraints have affected public education and extracurricular activities for children as well, from in-person music instruction to children’s choirs. However, existing risk assessments for children have been based on emission measurements of adults. To address this, we measured the particle emission rates of 15 pre-adolescent children, all eight to ten years old, with a laser particle counter for the test conditions: breathing at rest, speaking, singing and shouting. Compared with values taken from 15 adults, emission rates for breathing, speaking and singing were significantly lower for children. Particle emission rates were reduced by a factor of 4.3 across all conditions, whereas emitted particle volume rates were reduced by a factor of 4.8. These data can supplement SARS-CoV-2 risk management scenarios for various school and extracurricular settings.  相似文献   
86.
87.
88.
It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.  相似文献   
89.
Pathogen infection stimulates the fatty acid (FA) metabolism and the production of pro-inflammatory derivatives of FA. Barramundi, Lates calcarifer, was fed on a diet rich in preformed long-chain (?C20) polyunsaturated fatty acids (LC-PUFA) from fish oil (FO), to compare with diets containing high levels of C18 precursors for LC-PUFA – stearidonic (SDA) and γ-linolenic acid (GLA) – from Echium plantagineum (EO), or rapeseed oil (RO) rich in α-linolenic acid (ALA), but a poor source of LC-PUFA and their precursors. After 6 weeks, when growth rates were similar amongst the dietary treatments, a sub-lethal dose of Streptococcus iniae was administered to half of the fish, while the other half were maintained unchallenged and were pair-fed with the infected fish. Under a disease challenge situation, the tissue FA depots depleted at 3 days post-infection (DPI) and were then restored to their previous concentrations at 7 DPI. During the infection period, EO fish had a higher content of n3 and n6 PUFA in their tissues, higher n3:n6 PUFA ratio and reduced levels of the eicosanoids, TXB2 and 6-keto-PGF, in their plasma compared with RO fish. Fish fed on FO and EO had a longer lasting and enduring response in their FA and eicosanoid concentrations, following a week of bacterial infection, compared with those fed on RO. EO, containing SDA and GLA and with a comparatively higher n3:n6 PUFA ratio, proved more effective than RO in compensating for immunity stress.  相似文献   
90.
The production of nanoparticles (NPs) is increasing rapidly for applications in electronics, chemistry, and biology. This interest is due to the very small size of NPs which provides them with many interesting properties such as rapid diffusion, high specific surface areas, reactivity in liquid or gas phase, and a size close to biomacromolecules. In turn, these extreme abilities might be a problem when considering a potentially uncontrolled exposure to the environment. For instance, nanoparticles might be highly mobile and rapidly transported in the environment or inside the body through a water or air pathway. Accordingly, the very fast development of these new synthetic nanomaterials raises questions about their impact on the environment and human health. We have studied the impact of a model water dispersion of nanoparticles (7 nm CeO2 oxide) on a Gram-negative bacteria (Escherichia coli). The nanoparticles are positively charged at neutral pH and thus display a strong electrostatic attraction toward bacterial outer membranes. The counting of colony forming units (CFU) after direct contact with CeO2 NPs allows for the defining of the conditions for which the contact is lethal to Escherichia coli. Furthermore, a set of experiments including sorption isotherms, TEM microscopy, and X-ray absorption spectroscopy (XAS) at cerium L3 edge is linked to propose a scenario for the observed toxic contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号