Dense crowd counting and modeling at different gatherings has ignited a new flame in the visual surveillance research community. There is a high possibility of mishappenings in the form of stampede, mob fighting at these gatherings and the administration is helpless in these scenarios. There is a requirement of analyzing the crowd to prevent these dangerous situations. The proposed work is a case study of Kumbh Mela which models the crowd counting in densely populated images. In the proposed work, the orthographic projection of the crowd is captured using a camera attached to a drone, to reduce the effect of occlusion and scaling which, otherwise, may get introduce during image acquisition process. The captured data is fed to a Convolutional Neural Network for training the model to count head of persons present in the frame. The results obtained from the trained model are validated using geometry and imaging techniques. The proposed model has achieved a mean-absolute-error of 94.3 and a mean-squared-error of 104.6 which seems to outperform the existing state-of-the-art models with respect to the reported performance parameters. The proposed model can be used as a viable solution in applications related to modeling the crowd behavior.
Unravelling the dynamics of network vertices is pivotal, and traditional centrality measures have limitations in adapting to structural changes, directed and weighted networks, and temporal analyses. This paper introduces a ground breaking approach - hitting time-based centrality. Utilizing network matrix notations and a random walk model on a connected network , we establish a Markov chain to quantify the hitting time, hitting distance, and hitting centrality, providing a nuanced measure prioritizing central vertices. Through extensive experiments using Kendall's tau coefficient, the paper evaluates the method's correlation with actual influence in the Susceptible-Infectious (SI) model, showcasing superior performance across diverse network sizes and structures. The hitting centrality method exhibits sensitivity to connectivity dynamics, effective incorporation of temporal dynamics, and robust handling of weighted and directed networks. Positive Kendall's tau coefficients underline the method's proficiency in prioritizing influential vertices by correlating hitting centrality values with actual infection ability. The demonstrated robustness to structural changes enhances its utility for dynamic network analysis. In conclusion, our hitting time-based centrality approach emerges as a promising method, mitigating the shortcomings of traditional measures. By integrating information propagation speed, accommodating network dynamics, and enabling time-dependent analyses, it offers a comprehensive tool for evaluating vertex importance and influence in complex networks. 相似文献
Laser-induced graphene (LIG) is a promising technology enabling cost-effective, scalable, and high surface area 3D-porous graphene electrodes for electrochemical applications. Nitrate in water bodies is a harmful contaminant to humans and the ecosystems. Its detection by electrochemical sensors is challenging due to the interference from nitrite. Herein, for the first time, a LIG-based electrochemical sensor modified with electrodeposited silver dendrites (EdAg/LIG) without using surfactants is proposed for the detection of nitrate with tunable selectivity and sensitivity. The modified electrode surface is extensively characterized by spectroscopic and electrochemical methods and the underlying mechanism for the formation of dendrites is substantiated. The developed EdAg dendrites/LIG electrode shows excellent sensing properties for the detection of nitrate at pH 2. The interference with nitrite in acidic media is eliminated by implementing a novel strategy to shift the working pH of the electrode to 7. The achieved sensor properties at both pH values surpass other LIG-based sensors with limit of detection of 0.46 at pH 2 and 5.53 µm at pH 7. The developed sensor also shows good recovery characteristics in mineral, tap, and groundwater across a wide range of concentrations and also demonstrates good stability under temperature fluctuations and deformations. 相似文献
Two new tetracationic hetero-bimetallacycles were prepared from a bis-pyridine amide ligand and metal (Pd and Pt) acceptors. We found that both self-assembled hetero-bimetallacycles bind and unwind supercoiled DNA as established by photophysical and gel electrophoresis analyses, respectively. 相似文献
An analysis of microstrip line fed antennas has been presented theoretically using circuit theory concept. The theoretical investigations of F-shape antenna parameters such as return loss, VSWR, gain and efficiency have been calculated. It is found that antenna resonate at 2.4 and 5.2 GHz for lower and upper resonance frequencies respectively. The bandwidth of the F-shape antenna at lower resonance frequency is 20.08 % (simulated) and 17.05 % (theoretical) whereas at upper resonance frequency, it is 5.93 % (simulated) and 5.78 % (theoretical). The characteristics of the F-shape antenna is compared with other microstrip line fed antennas. It is found that F-shape antenna is linearly polarised along the X direction. The theoretical results are compared with IE3D simulation results as well as reported experimental results and they are in close agreement. 相似文献
By means of constrained classical molecular dynamics simulations, we have computed the structure of azurin deposited on a Au(111) surface at different possible orientations and the azimuthal forces acting on the protein at each sampled conformation. We have then evaluated the effect of the angular variation on the speed of electron tunneling between the protein redox site and the metal surface. We find that the azurin/gold electronic coupling has a strong dependence on the molecular orientation and is greatly enhanced by inclining the protein to lie as flat as possible on the surface. We discuss the implications of our results for scanning probe microscopy experiments in which tunneling currents are measured while the protein is subjected to mechanical forces exerted by the tip of the instrument. 相似文献
Wireless Personal Communications - For the precise positioning applications it is important to determine and eliminate the positioning error introduced by various sources such as the ionosphere. To... 相似文献
In this two part paper, we provide a survey of recent and emerging topics in wireless networking. We view the area of wireless
networking as dealing with problems of resource allocation so that the various connections that utilise the network achieve
their desired performance objectives. In the first part of the paper, we first survey the area by providing a taxonomy of
wireless networks as they have been deployed. Then, we provide a quick tutorial on the main issues in the wireless ‘physical’
layer, which is concerned with transporting bits over the radio frequency spectrum. Then, we proceed to discuss some resource
allocation formulations in CDMA(code division multiple access) cellular networks and OFDMA(orthogonal frequency division multiple
access) networks.
In the second part of the paper, we first analyse random access wireless networks and pay special attention to 802·11 (Wi-Fi)
networks.We then survey some topics in ad hoc multihop wireless networks, where we discuss arbitrary networks, as well as
some theory of dense random networks. Finally, we provide an overview of the technical issues in the emerging area of wireless
sensor networks. 相似文献