首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学工业   1篇
金属工艺   1篇
机械仪表   6篇
建筑科学   1篇
无线电   2篇
一般工业技术   6篇
冶金工业   4篇
自动化技术   2篇
  2023年   2篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
A way to obtain macroscopic responsive materials from silicon‐oxide polymer core/shell microstructures is presented. The microparticles are composed of a 60 nm SiO2‐core with a random copolymer corona of the temperature responsive poly‐N‐isopropylacrylamide (PNIPAAm) and the UV‐cross‐linkable 2‐(dimethyl maleinimido)‐N‐ethyl‐acrylamide. The particles shrink upon heating and form a stable gel in both water and tetrahydrofuran (THF) at 3–5 wt% particle content. Cross‐linking the aqueous gel results in shrinkage when the temperature is increased above the lower critical solution temperature and it regains its original size upon cooling. By freeze drying with subsequent UV irradiation, thin stable layers are prepared. Stable fibers are produced by extruding a THF gel into water and subsequent UV irradiation, harnessing the cononsolvency effect of PNIPAAm in water/THF mixtures. The temperature responsiveness translates to the macroscopic materials as both films and fibers show the same collapsing behavior as the microcore/shell particle. The collapse and re‐swelling of the materials is related to the expelling and re‐uptake of water, which is used to incorporate gold nanoparticles into the materials by a simple heating/cooling cycle. This allows for future applications, as various functional particles (antibacterial, fluorescence, catalysis, etc.) can easily be incorporated in these systems.  相似文献   
22.
In laser-based direct energy deposition (DED-LB) additive manufacturing (AM), wire or powder materials are melted by a high-power laser beam. Process-specific characteristics enable robust in situ fabrication of compositionally graded materials, e.g., through an adaption of powder mass flow from independent hoppers. Based on the high flexibility of this approach, pathways toward multimaterial AM have been unlocked. Obviously, such characteristics enable high-throughput alloy development. However, rapid alloy development demands substantial characterization efforts to assess phase and microstructural evolution. So far, property analysis is considered as the limiting factor for these high-throughput approaches. Herein, the use of high-brilliance X-Ray analysis and subsequent micropillar compression testing are introduced to tackle these challenges. As a proof of concept, their application to a compositionally graded material made from AISI 316L stainless steel and a CoCrMo alloy is presented. The results obtained reveal that X-Ray analysis can be exploited to evaluate process robustness, chemical characteristics, and phase composition within the gradient regions. Moreover, the use of micropillar compression testing provides spatially resolved insights into the mechanical properties of the gradient regions. The combination of both characterization techniques eventually opens pathways toward a robust and time-efficient alloy development using powder-fed DED-LB (DED-LB/P).  相似文献   
23.
Quenching and partitioning (Q&P) steels are characterized by an excellent combination of strength and ductility, opening up great potentials for advanced lightweight components. The Q&P treatment results in microstructures with a martensitic matrix being responsible for increased strength whereas interstitially enriched metastable retained austenite (RA) contributes to excellent ductility. Herein, a comprehensive experimental characterization of microstructure evolution and austenite stability is carried out on a 42CrSi steel being subjected to different Q&P treatments. The microstructure of both conditions is characterized by scanning electron microscopy as well as X-ray diffraction (XRD) phase analysis. Besides macroscopic standard tensile tests, RA evolution under tensile loading is investigated by in situ XRD using synchrotron and laboratory methods. As a result of different quenching temperatures, the two conditions considered are characterized by different RA contents and morphologies, resulting in different strain hardening behaviors as well as strength and ductility values under tensile loading. In situ synchrotron measurements show differences in the transformation kinetics being rationalized by the different morphologies of the RA. Eventually, the evolution of the phase specific stresses can be explained by the well-known Masing model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号