首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2214篇
  免费   75篇
  国内免费   12篇
电工技术   29篇
综合类   1篇
化学工业   582篇
金属工艺   66篇
机械仪表   44篇
建筑科学   59篇
矿业工程   3篇
能源动力   120篇
轻工业   156篇
水利工程   23篇
石油天然气   9篇
无线电   230篇
一般工业技术   491篇
冶金工业   197篇
原子能技术   27篇
自动化技术   264篇
  2023年   16篇
  2022年   49篇
  2021年   75篇
  2020年   54篇
  2019年   49篇
  2018年   81篇
  2017年   57篇
  2016年   93篇
  2015年   49篇
  2014年   74篇
  2013年   155篇
  2012年   90篇
  2011年   121篇
  2010年   98篇
  2009年   126篇
  2008年   104篇
  2007年   87篇
  2006年   62篇
  2005年   50篇
  2004年   31篇
  2003年   47篇
  2002年   51篇
  2001年   44篇
  2000年   38篇
  1999年   34篇
  1998年   30篇
  1997年   33篇
  1996年   41篇
  1995年   29篇
  1994年   27篇
  1993年   22篇
  1992年   31篇
  1991年   21篇
  1990年   12篇
  1989年   19篇
  1988年   24篇
  1987年   18篇
  1986年   23篇
  1985年   28篇
  1984年   22篇
  1983年   24篇
  1982年   17篇
  1981年   24篇
  1980年   18篇
  1979年   11篇
  1978年   25篇
  1977年   10篇
  1976年   12篇
  1975年   13篇
  1974年   13篇
排序方式: 共有2301条查询结果,搜索用时 15 毫秒
81.
In this article, we report Co-Co2B and Ni-Ni3B nanocomposites as catalyst for hydrogen generation from alkaline sodium borohydride. Kinetic studies of the hydrolysis of sodium borohydride with Co-Co2B and Ni-Ni3B nanocomposites reveal that the concentration of NaBH4 has no effect on the rate of hydrogen generation. Hydrolysis was found to be first order with respect to the concentration of catalyst. The catalytic activity of Co-Co2B was found to be much higher than that of Ni-Ni3B as inferred from the activation energies 35.245 KJ/mol and 55.810 kJ/mol, respectively. Co-Co2B nanocomposites were found to be more magnetic than Ni-Ni3B. These catalysts showed superior recyclability with almost the similar catalytic activities for several hydrolytic cycles supporting the principles of sustainability. Co-Co2B catalyst showed hydrogen generation rate of about 4300 mL/min/g which is comparable to most of the reported good catalysts till date.  相似文献   
82.
83.
Lithium-ion cells are preferred in the electrical powertrain due to high-power density, compactness, and modularity. In real driving conditions, the cells undergo discharge rates as high as 4 C resulting in high heat generation affecting the performance. To obtain the maximum performance the pack construction and thermal management of cells are crucial parameters. In our work, air-cooled technique with diverse air inlet and staggered scheme with a two-channel partition approach for thermal management of the cylindrical lithium-ion cells are studied in computational fluid dynamics. The simulation model is validated with experimental results. The obtained results demonstrate that the cells in the dual-directional air inlet arrangement had low maximum temperature difference among and within the cells and required least fan work. This arrangement required least fan work to generate optimal air inlet velocity of 2 m/s for 1, 2, and 3 C and 4 m/s for 4 C discharge rates. There is a reduction of 50% and 33% fan work for 3 and 4 C discharge rates, which are the majority operating points. Also, it shows that the temperature uniformity within the cells has improved. The results of this study can used to optimize parameters for designing an enhanced thermal management system.  相似文献   
84.
85.
Neural Computing and Applications - Heart diseases are of notable public health disquiet worldwide. Heart patients are growing speedily owing to deficient health awareness and bad consumption...  相似文献   
86.
Blending of two or more pure polymers is an effective way to produce composites with tunable properties. In this paper, we report dynamic Monte Carlo simulation results on the crystallization of crystalline/crystalline (A/B) symmetric binary polymer blend, wherein the melting temperature of A-polymer is higher than B-polymer. We study the effect of segregation strength (arises from the immiscibility between A- and B-polymers) on crystallization and morphological development. Crystallization of A-polymer precedes the crystallization of B-polymer upon cooling from a homogeneous melt. Simulation results reveal that the morphological development is controlled by the interplay between crystallization driving force (viz., attractive interaction) and de-mixing energy (viz., repulsive interaction between two polymers). With increasing segregation strength, the interface becomes more rigid and restricts the development of crystalline structures. Mean square radius of gyration shows a decreasing trend with increasing segregation strength, reflecting the increased repulsive interaction between A- and B-polymers. As a consequence, a large number of smaller size crystals form with lesser crystallinity. Isothermal crystallization reveals that the transition pathways strongly depend on segregation strength. We also observe a path-dependent crystallization behavior in isothermal crystallization: two-step (sequential) isothermal crystallization yields superior crystalline structure in both A- and B-polymers than one-step (coincident) crystallization.  相似文献   
87.
To identify potential biomarkers for improving diagnosis of melioidosis, we compared plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and controls without active infection, using ultra-high-performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA) showed that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients and controls. Using multivariate and univariate analysis, 12 significant metabolites from four lipid classes, acylcarnitine (n = 6), lysophosphatidylethanolamine (LysoPE) (n = 3), sphingomyelins (SM) (n = 2) and phosphatidylcholine (PC) (n = 1), with significantly higher levels in melioidosis patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed area-under-receiver operating characteristic curve (AUC) >0.80 when compared both between melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when compared, both between melioidosis and bacteremia patients (AUC 0.998, sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and specificity 100%). Our results indicate that metabolome profiling might serve as a promising approach for diagnosis of melioidosis using patient plasma, with SM(d18:2/16:0) representing a potential biomarker. Since the 12 metabolites were related to various pathways for energy and lipid metabolism, further studies may reveal their possible role in the pathogenesis and host response in melioidosis.  相似文献   
88.
89.
Closed‐loop transmit diversity is considered an important technique for improving the link budget in the third generation and future wireless communication standards. This paper proposes several transmit diversity algorithms suitable for small wireless terminals and presents performance assessment in terms of average signal‐to‐noise ratio (SNR) and outage improvement, convergence, and complexity of operations. The algorithms presented herein are verified using data from measured indoor channels with variable antenna spacing and the results explained using measured radiation patterns for a two‐element array. It is shown that for a two‐element array, the best among the proposed techniques provides SNR improvement of about 3 dB in a tightly spaced array (inter‐element spacing of 0.1 wavelength at 2 GHz) typical of small wireless devices. Additionally, these techniques are shown to perform significantly better than a single antenna device in an indoor channel considering realistic values of latency and propagation errors.  相似文献   
90.
In this account, we elaborate our group's contribution towards understanding the chemistry of carbohydrate-derived donor-acceptor (DA) cyclopropanes. Our work was mainly focused on the ring opening of these versatile chiral synthons under the influence of Lewis acid promoters like electrophilic halogen species, TMSOTf, BF3.OEt2, etc. We studied various modes of ring opening on these DA cyclopropanes, envisaging the access to intriguing molecular architectures. These modes of reaction of the DA cyclopropanes can be controlled by strategically introducing an electron-withdrawing group (EWG) onto the cyclopropane ring, which could direct the ring cleavage by polarizing the cyclopropane C−C bond. Our studies also revealed that the ring opening is sluggish in the absence of an EWG. Using this concept, we demonstrated the synthesis of various biologically interesting molecular skeletons, viz., glycoamino acids (GAA), GAA nucleotides, α-levoglucosan amino acid, and septano-oligosaccharides, with high selectivity. We also applied our understanding to the first stereoselective synthesis of (S)-(−)-longianone and confirmed its absolute configuration. Apart from the inherently activated DA cyclopropanes, we introduced the in situ generation of DA cyclopropanes, starting from vinylcyclopropanes (VCPs). The ring-opening and ring-expansion chemistry of these easily accessible synthons was studied. The chemistry developed for carbohydrate-fused cyclopropanes was also applied for carbohydrate-derived spiro-cyclopropanes. The Lewis-acid-mediated ring opening of spiro-DA-cyclopropanes enabled easy access to fused furopyrans and spirolactones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号