首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   35篇
  国内免费   3篇
电工技术   6篇
化学工业   71篇
金属工艺   3篇
机械仪表   12篇
建筑科学   10篇
能源动力   19篇
轻工业   27篇
水利工程   2篇
无线电   36篇
一般工业技术   104篇
冶金工业   7篇
原子能技术   1篇
自动化技术   13篇
  2024年   3篇
  2023年   14篇
  2022年   7篇
  2021年   18篇
  2020年   21篇
  2019年   14篇
  2018年   18篇
  2017年   14篇
  2016年   17篇
  2015年   5篇
  2014年   21篇
  2013年   23篇
  2012年   20篇
  2011年   25篇
  2010年   11篇
  2009年   18篇
  2008年   13篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
11.
Electrochemical treatment and galvanic coupling are some of the possible modes of acceleration of low temperature phosphating process. The cathodic and anodic treatments during phosphating influence the deposition mechanism, characteristic properties and the corrosion resistance of the resultant coatings in a different way. The present paper aims to compare these aspects and to identify the possible applications of phosphate coatings obtained by these treatments.  相似文献   
12.
Understanding the effect of conductivity in electrospinning solutions is crucial in order to improve or control the electrospinning process. In this paper the effect of adding small amounts (0.039–0.259 mol · kg?1) of three different conductive additives to aqueous solutions of polyvinyl alcohol has been investigated. The salts were HMICl (a room temperature ionic liquid), TEBAC (a quaternary ammonium salt) and KCl. Addition of these salts caused a steady increase in the solution conductivity but the fiber diameter was typically greater than that of PVA alone, and exhibited an oscillatory trend. The oscillatory trend on the fiber diameter is attributed to fiber backbuilding and fusion that occurs prior to deposition on the collector.

  相似文献   

13.
In this work, we have presented a spin-coating method to produce thin films started with pure BiCrO_3(BCO) and ended up with BiFeO_3(BFO) by increasing x values in the(BiFeO_3)_x–(BiCrO_3)_(1-x)composites. All the produced thin films have been crystallized at the annealing temperatures of 400 °C for 0.5 h. The XRD and EDAX spectrums give insight that the two crystal phases related to BCO and BFO stayed together within the thin film matrices. SEM analysis showed that the prepared composite had macroporous morphology with interconnected pores and its width(size) decreased with increasing x values. The strong correlations are observed among the microstructure, dielectric, ferroelectric, ferromagnetic properties and Fe concentration. Among all composites, the composition of 0.75 shows an attractive magnetization, polarization, switching and improved dielectric behaviors at room temperature. Significant increase in the multiferroic characteristics of 0.75 composition is due to arise of lower leakage current by causing reduction in oxygen vacancy density, and enhancement of super-exchange magnetic interaction between Fe~(3+) and Cr~(3+) at BFO/BCO interface layers. Our result shows that the thin layer on Pt(111)/Ti/SiO_2/Si substrate possesses simultaneously improved ferroelectric and ferromagnetic properties which make an inaccessible potential application for nonvolatile ferroelectric memories.  相似文献   
14.
The LiZnxMn2−xO4 (x = 0.00-0.15) cathode materials for rechargeable lithium-ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and succinic acid as the chelating agent. The gel precursors of metal succinates were dried in vacuum oven for 10 h at 120 °C. After drying, the gel precursors were ground and heated at 900 °C. The structural characterization was carried out by X-ray powder diffraction and X-ray photoelectron spectroscopy to identify the valance state of Mn in the synthesized materials. The sample exhibited a well-defined spinel structure and the lattice parameter was linearly increased with increasing the Zn contents in LiZnxMn2−xO4. Surface morphology and particle size of the synthesized materials were determined by scanning electron microscopy and transmission electron microscopy, respectively. Electrochemical properties were characterized for the assembled Li/LiZnxMn2−xO4 coin type cells using galvanostatic charge/discharge studies at 0.5 C rate and cyclic voltammetry technique in the potential range between 2.75 and 4.5 V at a scan rate of 0.1 mV s−1. Among them Zn doped spinel LiZn0.10Mn1.90O4 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.  相似文献   
15.
Surfaces of the 173 residue catalytic domain of human matrix metalloproteinase 3 (MMP-3(DeltaC)) affected by binding of the N-terminal, 126 residue inhibitory domain of human TIMP-1 (N-TIMP-1) have been investigated using an amide-directed, NMR-based approach. The interface was mapped by a novel method that compares amide proton line broadening by paramagnetic Gd-EDTA in the presence and absence of the binding partner. The results are consistent with the X-ray model of the complex of MMP-3(DeltaC) with TIMP-1 (Gomis-Rüth et al. (1997) Nature 389, 77-81). Residues Tyr155, Asn162, Val163, Leu164, His166, Ala167, Ala169, and Phe210 of MMP-3(DeltaC) are protected from broadening by the Gd-EDTA probe by binding to N-TIMP-1. N-TIMP-1-induced exposure of backbone amides of Asp238, Asn240, Gly241, and Ser244 of helix C of MMP-3(DeltaC) to Gd-EDTA confirms that the displacement of the N-terminus of MMP-3(DeltaC) occurs not only in the crystal but also in solution. These results validate comparative paramagnetic surface probing as a means of mapping protein-protein interfaces. Novel N-TIMP-1-dependent changes in hydrogen bonding near the active site of MMP-3(DeltaC) are reported. N-TIMP-1 binding causes the amide of Tyr223 of MMP-3(DeltaC) bound by N-TIMP-1 to exchange with water rapidly, implying a lack of the hydrogen bond observed in the crystal structure. The backbone amide proton of Asn162 becomes protected from rapid exchange upon forming a complex with N-TIMP-1 and could form a hydrogen bond to N-TIMP-1. N-TIMP-1 binding dramatically increases the rate of amide hydrogen exchange of Asp177 of the fifth beta strand of MMP-3(DeltaC), disrupting its otherwise stable hydrogen bond.  相似文献   
16.
Metal phosphides and heteroatom‐doped carbons have been regarded as promising candidates as bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, both have suffered from stability issues during repeated ORR and OER operations in zinc–air batteries (ZABs). Herein, this study reports a versatile cobalt‐based hybrid catalyst with a 1D structure by integrating the metal‐organic framework‐derived conversion approach and an in situ crosslinking method. Among them, the 1D hybrid catalyst composed of ultrasmall cobalt phosphide nanoparticles supported by nitrogen‐, sulfur‐, phosphorus‐doped carbon matrix shows remarkable bifunctional activity close to that of the benchmark precious‐metal catalysts along with an excellent durability in the full potential range covering both the OER and ORR. The overall overpotential of the rechargeable ZABs can be greatly reduced with this bifunctional hybrid catalyst as an air‐electrode, and the cycling stability outperforms the commercial Pt/C catalyst. It is revealed that the cobalt phosphide nanoparticles are in situ converted to cobalt oxide under the accelerated conditions during OER (and/or ORR) of the ZABs and reduces the anodic current applied to the carbon. This contributes to the stability of the carbon material and in maintaining the high initial catalytic properties of the hybrid catalyst.  相似文献   
17.
Subgaskets are usually applied to a catalyst-coated membrane (CCM) for the edge-protection of the electrolyte membrane and easy handling. They cover the peripheral region (non-active area) of CCM and have a defined window (active area) for accommodating the electrode. In this study, three subgasketed CCMs with different configurations were designed with a laboratory-scale 5 cm2 fuel cell and the effects of the components underneath the subgaskets on the electrochemical properties of CCMs and cell performance were investigated by several electrochemical techniques. The results reveal that part of the catalyst layer under the subgaskets is activated for reaction area, leading to slightly higher electrochemical surface area (ESA), higher H2 crossover, and smaller shorting resistance. The non-active region of subgasketed CCM has little impact on proton resistance in the catalyst layer, oxygen reduction reaction (ORR) kinetics, and limiting current, but has adverse effects on cell performance in the low current region under dry conditions due to increased hydrogen crossover. The findings could provide guidelines for subgasket design and application in laboratory-scale fuel cells.  相似文献   
18.
Five types of multiwalled carbon nanotubes noncovalently functionalized with poly (propylene imine) dendrimer (PPI (G2))-silver nanoparticle hybrids were prepared by varying the [Ag+] load from 2 to 6 mM. These nanohybrids were characterized with FTIR, UV-Vis, FESEM, EDS, HRTEM and Raman analyses. The catalytic potential was studied through the reduction of 4-nitrophenol as a model reaction under pseudo first-order reaction conditions. The calculated kobs value (16.94 × 10?2 min?1) reveals that the 4 mM [Ag+] loaded catalyst showed higher efficiency than with rest of the catalysts. Further, the in vitro antimicrobial activities of all nanohybrids were inspected against Pseudomonas aeruginosa and Staphylococcus aureus.  相似文献   
19.
Au–Cu and Pd–Cu bimetallic model catalysts were prepared on native SiO2/Si(100) substrate under ultra high vacuum (UHV) by employing buffer layer assisted growth procedure with amorphous solid water as the buffer material. The effect of the bimetallic nanoclusters (NCs) surface composition and morphology on their chemical reactivity has been studied with acetylene decomposition and conversion to ethylene and benzene as the chemical probe. It was found that among the Au–Cu NCs compositions, Au0.5Cu3 NCs revealed outstanding catalytic selectivity towards ethylene formation. These NCs were further characterized by employing TEM, XPS and HAADF-STEM coupled EDX analysis. With CO molecule as a probe, CO temperature programmed desorption has been used to investigate the distribution of gold on the top-most surface of the supported clusters. Surface segregation at high relative elemental fraction of gold leads to a decreased activity of the Au–Cu NCs towards ethylene formation. In contrast to the Au–Cu NCs, the Pd–Cu bimetallic system reveals reduced sensitivity to the relative elemental composition with respect to selectivity of the acetylene transformation toward ethylene formation. On the other hand, remarkable activity towards benzene formation has been observed at elemental composition of Cu3Pd, at comparable rates to those for ethylene formation on clean Pd NCs.  相似文献   
20.
Developments in self‐assembly methods allow access to hierarchical materials featuring a wide range of functionality and applications. Polymer‐based self‐assembly of nanoparticles opens up new avenues for the fabrication of highly structured nanocomposites that can serve as bridges between ‘bottom‐up’ and ‘top‐down’ methods. Of various interactions leading to self‐assembly of nanocomposites, hydrogen bonding and electrostatic interactions are commonly utilized. In this review, we illustrate the design and subsequent property tuning of various self‐assembled nanocomposite materials that were developed based on these interactions. Copyright © 2007 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号