首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   3篇
  国内免费   1篇
电工技术   5篇
化学工业   27篇
金属工艺   2篇
机械仪表   4篇
建筑科学   13篇
能源动力   3篇
轻工业   1篇
水利工程   1篇
石油天然气   14篇
无线电   17篇
一般工业技术   64篇
冶金工业   14篇
原子能技术   1篇
自动化技术   18篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2018年   10篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   19篇
  2012年   11篇
  2011年   8篇
  2010年   3篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
181.
Azzam RM  Alsamman A 《Applied optics》2008,47(17):3211-3215
Conditions for reducing the reflectance of a dielectric-conductor interface for p- and s-polarized light to a minimum at any angle of incidence phi are determined. The refractive indices of a transparent immersion medium (liquid) that achieve minimum reflectance at normal incidence, phi=0, and at phi=45 degrees are independent of polarization. These indices provide sufficient data to determine the real and imaginary parts of the complex refractive index of an absorbing substrate. Reflection at a dielectric-Au interface at 500 nm wavelength is considered as an example. It is shown that the lowest possible reflectance is attained for p-polarized light at phi=45 degrees and that the associated p-reflection phase shift is also minimum at that angle. For phi> or =65 degrees the lowest reflectance of p-polarized light occurs when the ambient is vacuum or air. However, this lowest reflectance at the air-Au interface is not a true minimum in a mathematical sense.  相似文献   
182.
Prediction of risks and therapeutic outcome in nuclear medicine largely rely on calculation of the absorbed dose. Absorbed dose specification is complex due to the wide variety of radiations emitted, non-uniform activity distribution, biokinetics, etc. Conventional organ absorbed dose estimates assumed that radioactivity is distributed uniformly throughout the organ. However, there have been dramatic improvements in dosimetry models that reflect the substructure of organs as well as tissue elements within them. These models rely on improved nuclear medicine imaging capabilities that facilitate determination of activity within voxels that represent tissue elements of approximately 0.2-1 cm(3). However, even these improved approaches assume that all cells within the tissue element receive the same dose. The tissue element may be comprised of a variety of cells having different radiosensitivities and different incorporated radioactivity. Furthermore, the extent to which non-uniform distributions of radioactivity within a small tissue element impact the absorbed dose distribution is strongly dependent on the number, type, and energy of the radiations emitted by the radionuclide. It is also necessary to know whether the dose to a given cell arises from radioactive decays within itself (self-dose) or decays in surrounding cells (cross-dose). Cellular response to self-dose can be considerably different than its response to cross-dose from the same radiopharmaceutical. Bystander effects can also play a role in the response. Evidence shows that even under conditions of 'uniform' distribution of radioactivity, a combination of organ dosimetry, voxel dosimetry and dosimetry at the cellular and multicellular levels can be required to predict response.  相似文献   
183.
Research on the radiation-induced bystander effect has been carried out mainly in 2-D tissue culture systems. This study uses a 3-D model, wherein apparently normal human diploid fibroblasts (AG1522) are grown in a carbon scaffold, to investigate the induction of a G(1) checkpoint in bystander cells present alongside radiolabelled cells. Cultures were simultaneously pulse-labelled with (3)H-deoxycytidine ((3)HdC) to selectively irradiate a minor fraction of cells, and bromodeoxyuridine (BrdU) to identify the radiolabelled cells. After thorough washing of cultures, iododeoxyuridine (IdU) was administered to detect proliferating bystander cells. The cultures were harvested at various times thereafter, and cells were reacted with two monoclonal antibodies specific to IdU/BrdU or BrdU, respectively, stained with propidium iodide, and subjected to multi-parameter flow cytometry. Cell-cycle progression was followed in radiolabelled cells (BrdU(+)) that were chronically irradiated by low energy beta particles emitted by DNA-incorporated (3)H, and in unlabelled bystander cells (BrdU(-)) by a flow cytometry based cumulative labelling index assay. As expected, radiolabelled cells were delayed, in a dose-dependent manner, in G(2) and subsequently G(1). No delay occurred in progression of bystander cells through G(1), when the labelled cells were irradiated at dose rates up to 0.32 Gy h(-1).  相似文献   
184.
Azzam RM  Perla SR 《Applied optics》2006,45(7):1650-1656
An all-transparent symmetric trilayer structure, which consists of a high-index center layer coated on both sides by a low-index film and embedded in a high-index prism, can function as an efficient polarizer or polarizing beam splitter under conditions of frustrated total internal reflection over a wide range of incidence angles. For a given set of refractive indices, all possible solutions for the thicknesses of the layers that suppress the reflection of either the p or s polarization at a specified angle, as well as the reflectance of the system for the orthogonal polarization, are determined. A 633 nm design that uses a MgF2-ZnS-MgF2 trilayer embedded in a ZnS prism achieves an extinction ratio (ER) > 40 dB from 50 degrees to 80 degrees in reflection and an ER > 20 dB from 58 degrees to 80 degrees in transmission. IR polarizers that use CaF2-Ge-CaF2 trilayers embedded in a ZnS prism are also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号