首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   4篇
  国内免费   1篇
电工技术   4篇
化学工业   40篇
金属工艺   4篇
机械仪表   4篇
建筑科学   11篇
能源动力   14篇
轻工业   12篇
水利工程   1篇
石油天然气   1篇
无线电   32篇
一般工业技术   83篇
冶金工业   6篇
原子能技术   1篇
自动化技术   41篇
  2023年   2篇
  2022年   18篇
  2021年   9篇
  2020年   6篇
  2019年   9篇
  2018年   12篇
  2017年   10篇
  2016年   12篇
  2015年   8篇
  2014年   12篇
  2013年   18篇
  2012年   14篇
  2011年   17篇
  2010年   13篇
  2009年   20篇
  2008年   8篇
  2007年   16篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1989年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有254条查询结果,搜索用时 10 毫秒
111.
H. Shen  Z. Fawaz 《Acta Mechanica》2002,159(1-4):29-38
Summary This paper examines the thermal behavior of a plane elastic compliant interphase layer surrounding an elliptic inhomogeneity which is embedded within an infinite matrix. To allow continuity of traction but discontinuity of displacements, the compliant interphase is modeled as a spring layer with a vanishing thickness. Furthermore, to obtain the resulting thermal stresses, the complex variable method was used, together with a series solution. A commerical finite element package was used to validate the theoretical predictions. The results reveal that thermal stresses vary with the aspect ratio of the inhomogeneity and the parameterh describing the spring constant of the interphase layer for four different types of inhomogeneous materials: aluminum, copper, gold and silver. In all these cases, the matrix was assumed to be made of silicon and the thermal stresses were assumed to result from a uniform change in temperature.  相似文献   
112.
Bonded composite repair has been recognized as an efficient and economical method to extend the fatigue life of cracked aluminium components. In this work, the finite element method is applied to analyze the central crack’s behaviour repaired by a boron/epoxy composite patch. The knowledge of the stress distribution in the neighbourhood of cracks has an importance for the analysis of their repair according to the patch geometry. The effects of mechanical and geometrical properties of the patch on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress intensity factor at the repaired crack with composite patch of height 2c/3 is reduced about 5% compared to cracks repaired with octagonal patch of size c. For patch height of c/3 the reduction is about 7%. The adhesive properties must be optimised in order to increase the repair performances and to avoid the adhesive failure.  相似文献   
113.
In this study, the effect of the voids growth on the damage of PP/talc micro-composite was analyzed using experimental and numerical approaches. Pure PP was filled with four proportions of treated talc: 5, 10, 40 and 50%. Tensile tests were performed on specimens manufactured from this composite. The Gurson–Tvergaard–Needleman model was implemented in FE model to predict the damage of the PP/talc. The predicted results were compared to the experimental ones. There is a good agreement between the numerical and the experimental results for pure PP, PP?+?40% of talc and the PP?+?50% of talc. We noted a significant divergence between the experimental and the numerical results for the PP reinforced with 5 and 10% of talc.  相似文献   
114.
We demonstrated mainly some of the different parameters effects -as a function of temperature-as window layers, thickness, and doping of the various layers (emitter, base and BSF) on the performances of InGaP/GaAs solar cell. First, we have varied the molar fraction of different layers; their thickness and the doping of both emitters and bases. We have registered the result of each variation until obtaining optimal parameters. In a second stage, we have simulated the InGaP/GaAs cell without window layers which results in η = 12.47% and η = 22.14% for eliminating top and bottom windows respectively. Then, the elimination of layer BSFs(back surface field) on the back face of the considered cell causes a remarkable decrease in open circuit voltage Voc and output η which reached 1.57 V and 11.95% respectively. In a last stage, we optimized and simulated the performances of the InGaP/GaAs dual-junction solar cell for its optimal parameters while varying its operation temperature from 300 K to 375 K with an increment of 25 °C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 K led to the following results Icc = 15.19 mA/cm?2, Voc = 2.53 V, FF = 91.32% and η = 25.43% which are close with those found in literature for In(1?x)Ga(x)P(x is molar fraction: x = 0.5). Therefore, we could determine the critical parameters of the cell and optimize its main parameters to obtain the highest performance for a dual junction solar cell. This work will pave the way with new prospects in the field of the photovoltaic. The structure simulation will simplify the manufacturing processes of solar cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.  相似文献   
115.
Pattern Analysis and Applications - Multimedia documents indexing systems performances have been improved significantly in recent years, especially after the involvement of deep learning...  相似文献   
116.
The effects of spin polarization on the structure, magnetic, and optoelectronic properties of Cr-based series of double perovskites Sr2CrXO6 (X = La and Y) have been studied by using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k code, within the generalized gradient approximation (GGA), GGA + U, and GGA plus Trans-Blaha-modified Becke–Johnson (TB-mBJ) as the exchange correlation. Our results show a similar half-metallic ferromagnetic ground state for both materials. From the electronic properties, it is found that Sr2CrYO6 has a direct band gap at (Γ-Γ) direction and Sr2CrLaO6 has an indirect band gap at (Γ-W) direction. Furthermore, we have computed the optic and thermodynamic properties which are investigated for the first time. Consequently, the magnetic, optoelectronic, and thermodynamic properties show these compounds are promising for high technological applications, namely spintronic materials.  相似文献   
117.
Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation.
  相似文献   
118.
The availability of an optical connection is considered to be a critical service differentiator in WDM optical networks. In this regard, the design of a protection scheme that improves the availability of high priority optical connections and makes efficient use of optical resources is a major challenge faced by optical network operators. In a previous study, we proposed the so-called priority-aware shared protection survivability scheme as a potential solution to this design issue.In this paper, we complement our previous study. More specifically, we develop an offline study whose main purpose is to assess the efficiency of the priority-aware shared protection scheme. Through this study, we show that the priority-aware shared protection strategy as opposed to existing protection strategies is able to achieve the best tradeoff between optical resource usage and optical connections’ availability satisfaction.  相似文献   
119.
Microsystem Technologies - In this paper, a new metamaterial-inspired high frequency surface wave antenna is designed. An artificial magnetic conductor surface is introduced into the near field...  相似文献   
120.
Security is an important component in the process of developing healthcare web applications. We need to ensure security maintenance; therefore the analysis of healthcare web application's security risk is of utmost importance. Properties must be considered to minimise the security risk. Additionally, security risk management activities are revised, prepared, implemented, tracked, and regularly set up efficiently to design the security of healthcare web applications. Managing the security risk of a healthcare web application must be considered as the key component. Security is, in specific, seen as an add-on during the development process of healthcare web applications, but not as the key problem. Researchers must ensure that security is taken into account right from the earlier developmental stages of the healthcare web application. In this row, the authors of this study have used the hesitant fuzzy-based AHP-TOPSIS technique to estimate the risks of various healthcare web applications for improving security-durability. This approach would help to design and incorporate security features in healthcare web applications that would be able to battle threats on their own, and not depend solely on the external security of healthcare web applications. Furthermore, in terms of healthcare web application's security-durability, the security risk variable is measured, and vice versa. Hence, the findings of our study will also be useful in improving the durability of several web applications in healthcare.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号