首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1818篇
  免费   171篇
  国内免费   32篇
电工技术   49篇
综合类   51篇
化学工业   476篇
金属工艺   103篇
机械仪表   72篇
建筑科学   106篇
矿业工程   9篇
能源动力   160篇
轻工业   266篇
水利工程   31篇
石油天然气   38篇
武器工业   4篇
无线电   75篇
一般工业技术   228篇
冶金工业   82篇
原子能技术   28篇
自动化技术   243篇
  2024年   8篇
  2023年   23篇
  2022年   68篇
  2021年   95篇
  2020年   63篇
  2019年   57篇
  2018年   82篇
  2017年   93篇
  2016年   103篇
  2015年   71篇
  2014年   87篇
  2013年   213篇
  2012年   95篇
  2011年   116篇
  2010年   104篇
  2009年   96篇
  2008年   63篇
  2007年   59篇
  2006年   42篇
  2005年   26篇
  2004年   40篇
  2003年   40篇
  2002年   84篇
  2001年   74篇
  2000年   32篇
  1999年   27篇
  1998年   27篇
  1997年   10篇
  1996年   12篇
  1995年   15篇
  1994年   17篇
  1993年   9篇
  1992年   11篇
  1991年   9篇
  1990年   2篇
  1988年   3篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1971年   2篇
  1935年   1篇
  1930年   2篇
  1918年   2篇
  1910年   1篇
排序方式: 共有2021条查询结果,搜索用时 15 毫秒
81.
82.
光学微球谐振腔由于其具有超高的Q值及极小的模式体积等优点,在高灵敏度传感和光通信等方面得到了广泛的研究。测试了未封装和封装后微球腔谐振波长随温度的变化,实验结果表明随温度增大,谐振波长线性红移,且线性度高。二者温度系数不同,未封装时为25.6 pm/℃,封装后为4.4 pm/℃,主要原因为紫外胶的负热光系数所致。理论分析了紫外胶的热光效应,通过控制紫外胶厚度可以改变光在紫外胶中的比例,从而调节温度系数。当光在紫外胶中比例为0.1135时,温度系数变为0,可以抑制温度漂移,实现了温度补偿;该比例继续增大,温度灵敏度提高。低温漂、高灵敏度、微型化拓宽了回音壁模式(WGM)传感器的应用潜力。  相似文献   
83.
Sonication is a well‐known sludge pretreatment technique with the advantages of simple operation and high efficiency. However, it is an energy‐intensive process. Hence, it is very important to predetermine its sludge disintegration efficiency at varying pretreatment conditions in order to minimize the ultrasonic energy consumption. In this study, it was found that the ultrasonic sludge disintegration occurred in two stages: rapid and subsequent slow disintegration stages. For this reason, it was aimed to develop a simple and accurate mathematical model to describe the two‐stage sludge disintegration as a function of pretreatment conditions. Sludge concentration and ultrasonic density along with sonication period were involved in this model as independent variables. It was determined that the mathematical model can predict accurately the degree of sludge disintegration. Thus, the proposed model was seen to be very useful for evaluating the disintegration efficiency and/or for process design using the operating parameters under different conditions.  相似文献   
84.
Novel multifunctional polymer nanofiber electrolytes with covalence crosslinked structures from various solution blends of reactive intercalated poly(vinyl alcohol)/octadecylamine montmorillonite (as a matrix polymer), poly(maleic anhydride‐alt‐methyl vinyl ether) (as a partner polymer) and their NaOH‐absorbing and Ag‐carrying polymer complexes were fabricated via electrospinning. Chemical, physical, morphological, and electrical properties of nanofiber structures were investigated by FTIR, XRD, SEM, and electrical analysis methods. Ag precursors in fiber composites significantly improved phase separation processing, fiber morphologies, diameter distributions, and electrical properties of the fibers. In situ generation of Ag nanoparticles and their distribution on nanofiber surfaces during fiber formation occurred via complex formation between silver cations and electronegative functional groups from both matrix and partner polymers as stabilizing/reducing agents. Electrical resistance and conductivity strongly depended on matrix/partner polymer ratios and absorption time of NaOH solution on nanofibers. Addition of NaOH changed the electrical properties of fiber structures from almost dielectric state to excellent conductivity form. The fabricated unique nanofiber electrolytes are promising candidates for applications in power and fuel cell nanotechnology, electrochemical, and bioengineering processes as reactive semiconductive platforms. POLYM. ENG. SCI., 56:204–213, 2016. © 2015 Society of Plastics Engineers  相似文献   
85.
We present a strategy for stabilizing the morphological integrity of electrospun polymeric nanofibers by heat stimuli in situ crosslinking. Amorphous polymer nanofibers, such as polystyrene (PS) and its co‐polymers tend to lose their fiber morphology during processing at temperatures above their glass transition temperature (Tg) typically bound to happen in nanocomposite/structural composite applications. As an answer to this problem, incorporation of the crosslinking agents, phthalic anhydride (PA) and tributylamine (TBA), into the electrospinning polymer solution functionalized by glycidylmethacrylate (GMA) copolymerization, namely P(St‐co‐GMA), is demonstrated. Despite the presence of the crosslinker molecules, the electrospinning polymer solution is stable and its viscosity remains unaffected below 60 °C. Crosslinking reaction stands‐by and can be thermally stimulated during post‐processing of the electrospun P(St‐co‐GMA)/PA‐TBA fiber mat at intermediate temperatures (below the Tg). This strategy enables the preservation of the nanofiber morphology during subsequent high temperature processing. The crosslinking event leads to an increase in Tg of the base polymer by 30 °C depending on degree of crosslinking. Crosslinked nanofibers are able to maintain their nanofibrous morphology above the Tg and upon exposure to organic solvents. In situ crosslinking in epoxy matrix is also reported as an example of high temperature demanding application/processing. Finally, a self‐same fibrous nanocomposite is demonstrated by dual electrospinning of P(St‐co‐GMA) and stabilized P(St‐co‐GMA)/PA‐TBA, forming an intermingled nanofibrous mat, followed by a heating cycle. The product is a composite of crosslinked P(St‐co‐GMA)/PA‐TBA fibers fused by P(St‐co‐GMA) matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44090.  相似文献   
86.
Understanding and controlling the molecular interactions between enzyme substrates and DNA nanostructures has important implications in the advancement of enzyme–DNA technologies as solutions in biocatalysis. Such hybrid nanostructures can be used to create enzyme systems with enhanced catalysis by controlling the local chemical and physical environments and the spatial organization of enzymes. Here we have used molecular simulations with corresponding experiments to describe a mechanism of enhanced catalysis due to locally increased substrate concentrations. With a series of DNA nanostructures conjugated to horseradish peroxidase, we show that binding interactions between substrates and the DNA structures can increase local substrate concentrations. Increased local substrate concentrations in HRP(DNA) nanostructures resulted in 2.9‐ and 2.4‐fold decreases in the apparent Michaelis constants of tetramethylbenzidine and 4‐aminophenol, substrates of HRP with tunable binding interactions to DNA nanostructures with dissociation constants in the micromolar range. Molecular simulations and kinetic analysis also revealed that increased local substrate concentrations enhanced the rates of substrate association. Identification of the mechanism of increased local concentration of substrates in close proximity to enzymes and their active sites adds to our understanding of nanostructured biocatalysis from which we can develop guidelines for enhancing catalysis in rationally designed systems.  相似文献   
87.
Platinum electrocatalysts were prepared using PtCl4 as a starting material and 1-decylamine, N,N-dimethyldecylamine, 1-dodecylamine, N,N-dimethyldodecylamine, 1-hexadecylamine, and 1-octadecylamine as surfactants. These surfactants were used for the first time in this synthesis to determine whether the primary and/or tertiary structure and/or chain length of the surfactants, affects the size and/or activity of the catalysts in C1–C3 alcohol electro-oxidation reactions. Electrochemical measurements (cyclic voltammetry and chronoamperometry) indicated that the highest electrocatalytic performance was observed for the Pt nanocatalysts that were stabilized by N,N-dimethyldecylamine, and this has a tertiary amine structure with a short chain length (R = C10H21). The high performance may be due to the high electrochemical surface area, Pt(0)/Pt(IV) ratio, %Pt utility, and roughness factor (R f). X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used to determine the parameters that affect the catalytic activities.  相似文献   
88.
89.
Temperature dependent current‐voltage (I–V) measurements of Au/Polyvinyl Alcohol + Bi2O3/n‐Si structure were conducted between 100 and 350 K for investigating the temperature dependence of I–V characteristics and current conduction mechanisms in the structure. Series resistance of the structure is calculated using Ohm's law and Cheungs' method. Ideality factor (n) and zero‐bias barrier height (ΦBo) were obtained considering thermionic emission theory. From 100 to 350 K, n changed from 32.1 to 3.54, and ΦBo changed from 0.27 to 0.99 eV. Obtained temperature dependent values of n and ΦBo suggested that thermionic emission is not the dominant current conduction mechanism. Therefore, Ln(I)–Ln(V) curves of the studied structure were plotted for investigating current conduction mechanisms in the structure and current flow is explained considering space charge limited current. Moreover, density of interface states (Dit) in the structure were calculated and its temperature dependence was investigated such that Dit values are reduced to the order of ~1013 eV?1 cm?2 from ~1014 eV?1 cm?2 with increasing temperature. POLYM. ENG. SCI., 54:1811–1816, 2014. © 2013 Society of Plastics Engineers  相似文献   
90.
The aim of this study was to improve hybrid dual-curable cyanate ester/boron phosphate composites via sequential thiol-ene photopolymerization and thermal polymerization for high performance applications such as aerospace and electronic devices. A novel 2,2′-diallylbisphenol A dicyanate ester (DA-BADCy) which is the allyl group containing cyanate ester was synthesized and characterized. DA-BADCy, silicon containing monofunctional thiol compound, trifunctional thiol compound and boron phosphate were cured using both ultraviolet (UV) and thermal methods. Using thiol-ene system, cyanate ester formulations, which are normally prepared at high temperatures, were prepared at room temperature. This study maintains ease of application for cyanate esters. Thermal stability, flammability and thermal conductivity of the samples were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI) and laser flash method, respectively. The samples were characterized with the following analysis; gel content, water absorption capacity and stress–strain test. Hydrophobicity of the samples was determined by the contact angle measurements. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy (SEM–EDS). The obtained results prove that the composites have good thermal and mechanical properties and with the help of easier preparation techniques, they can be used in many applications such as aerospace, electronic devices, materials engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号