首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2327篇
  免费   336篇
  国内免费   11篇
电工技术   50篇
综合类   8篇
化学工业   748篇
金属工艺   63篇
机械仪表   41篇
建筑科学   96篇
矿业工程   15篇
能源动力   173篇
轻工业   241篇
水利工程   28篇
石油天然气   63篇
无线电   268篇
一般工业技术   428篇
冶金工业   109篇
原子能技术   28篇
自动化技术   315篇
  2023年   66篇
  2022年   98篇
  2021年   115篇
  2020年   104篇
  2019年   124篇
  2018年   144篇
  2017年   126篇
  2016年   161篇
  2015年   128篇
  2014年   152篇
  2013年   214篇
  2012年   116篇
  2011年   118篇
  2010年   98篇
  2009年   96篇
  2008年   85篇
  2007年   77篇
  2006年   55篇
  2005年   67篇
  2004年   58篇
  2003年   34篇
  2002年   28篇
  2001年   39篇
  2000年   35篇
  1999年   36篇
  1998年   42篇
  1997年   24篇
  1996年   23篇
  1995年   9篇
  1994年   11篇
  1993年   17篇
  1992年   8篇
  1991年   10篇
  1990年   16篇
  1989年   15篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1980年   6篇
  1978年   6篇
  1977年   8篇
  1976年   11篇
  1975年   8篇
  1974年   8篇
  1973年   5篇
  1970年   4篇
排序方式: 共有2674条查询结果,搜索用时 12 毫秒
101.
This paper reports the results of studies on the effect of phenol functionalization of carbon nanotubes (CNTs) on the mechanical and dynamic mechanical properties of natural rubber (NR) composites. Fourier transform infrared spectrometry (FTIR) indicates characteristic peaks for ether and aromatic rings in the case of phenol functionalized CNT. Although differential scanning calorimetric (DSC) studies show no changes in the glass‐rubber transition temperature (Tg) of NR in the nanocomposites due to surface modification of CNT, dynamic mechanical studies show marginal shifting of Tg to higher temperature, the effect being pronounced in the case of functionalized CNT. Stress‐strain plots suggest an optimum loading of 5 phr CNT in NR formulations and the phenolic functionalization of CNT does not affect significantly the stress‐strain properties of the NR nanocomposites. The storage moduli register an increase in the presence of CNT and this increase is greater in the case of functionalized CNT. Loss tangent showed a decrease in the presence of CNT, and the effect is more pronounced in the case of phenol functionalized CNT. Transmission electron microscopy (TEM) reveals that phenol functionalization causes improvement in dispersion of CNT in NR matrix. This is corroborated by the increase in electrical resistivity in the case of phenol functionalized CNT/NR composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
102.
The hypothesis of incorporating carbon nanotubes (CNTs) into the interfacial layers of fiber‐reinforced polymer composites fiber‐reinforced Polymers (FRPs) to enhance their mechanical properties and mitigate the stress wave propagation during a blast event is investigated. A numerical model is developed to simulate the stress wave propagation in a laminated elastic/viscoelastic FRP. Coupled with multiobjective optimization paradigms, the optimal CNTs contents in the interfacial layers are determined to minimize the stress‐to‐strength ratio in each layer. A case study demonstrating the design of a five‐layered FRP subjected to a blast event is presented. The simulation revealed that the viscoelastic properties of the matrix material contribute significantly to the energy dissipation during stress wave propagation. It is shown that addition of 0.69% CNTs by volume to the epoxy interface significantly enhances the ability of composite to resist blast loading. Results were compared with a standard model that assumes only elastic behavior. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   
103.
A quantitative analysis method for the distribution of noncrystalline poly(butadiene) component in poly(ε-caprolactone)/poly(butadiene) (PCL/PB) binary blends have been analyzed by advance application of Raman spectroscopy, optical microscopy, and differential scanning calorimetry (DSC) techniques. Thin films of different compositions of PCL/PB binary blends were prepared from solution and isothermally crystallized at a certain temperature. After calibration with real data, quantitative analyses by Raman spectroscopy revealed the amorphous PB are trapped inside the PCL crystals. Polarized optical microscopy and real time atomic force microscopy were used to collect data for the crystal morphology and crystal growth rate. For pure PCL crystals, a morphology of truncated lozenge shape was observed, independent of crystallization temperature and regardless of the blends compositions. For the pure PCL and their blends, almost unique crystal growth rate was found. The miscibility behaviors using DSC were drawn through melting point depression method. The Hoffman-Weeks extrapolations of the blends were found to be linear and identical with those of the neat PCL. The interaction parameter for the blends indicating that the PCL and PB blends have no intermolecular interaction, confirming the blends are immiscible. Despite the immiscibility of the blend, the PCL crystals do not bend during the growth process and do not reduce the growth rate as they do for miscible blend systems.  相似文献   
104.
This work aims at developing an efficient and feasible adsorption-based separation process for the separation of vinyl chloride and nitrogen, on activated carbon, by employing a multitubular packed bed geometry, with adsorbent material inside the tubes. Using this geometry, a 2-dimensional mathematical model of a temperature pressure swing adsorption process was used to developed a 6-step three multitubular adsorbers system capable of separating and purifying an industrial scale gas stream of a 40:60% (v/v) vinyl chloride/nitrogen mixture into a 95% (v/v) vinyl chloride stream and a nitrogen stream with a vinyl chloride limit concentration of 8 ppm (w/w). The process reported energy consumption of 4.88 × 106 J/kgVCM and recovery capacity of 24.35 kgVCM/(m3unit h). The multitubular geometry enabled the use of lower adsorbent loads, shorter cycle times, and lower regeneration temperatures. An equivalent 1-dimensional model has also shown to satisfactorily estimate the performance of the current equipment.  相似文献   
105.
The Parex unit for industrial‐scale purification of p‐xylene was studied through detailed simulation and the accuracy of the developed model tested against real industrial data. Starting from a comprehensive analysis of the construction and operation of the industrial unit, a simulation model was developed that incorporates the existing three major types of dead volumes: bed lines, which connect the beds to the rotary valve, circulation lines, which connect adjacent adsorbent chambers, and bed‐head dead volumes, which are located upstream of each bed due to the existence of internals. By gathering operation data and surveys in the pumparound line and in the extract stream, three case studies were defined and compared with simulation results. The model is capable of predicting the performance of the industrial unit. Further simulations were made and compared with plant data to assess the effect of adsorbent capacity loss on the long‐term performance of the unit. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1345–1363, 2015  相似文献   
106.
A polymer gel is one of the common remediate methods to either reduce or totally block excessive water production in oilfields. Some systems demonstrated an excellent performance in treating the problem like polyacrylamide tert‐butyl acrylate (PAtBA)/polyethylenimine (PEI). In this study, polyacrylamide (PAM) was introduced as a cheap alternative to PAtBA that can tolerate high salinity reservoirs. The thermal stability of the PAM/PEI polymeric gel in saline water was examined at 150°C (302F). Samples prepared in sea water showed better stability compared with distilled and field water. Dynamic rheology and core‐flooding experiments were used to evaluate the PAM / PEI gel system at high temperatures. NaCl and NH4Cl were evaluated as a possible retarders for delaying the gelation time in order to achieve a successful placement. NH4Cl was found to be more effective retarder. Core‐flooding tests were conducted in sandstone and carbonate cores. The subject polymer gel was injected at rates typical of those in field applications. The injectivity of PAM/PEI was tested in Berea sandstone cores with initial permeability of ~45 mD. The post‐treatment of the system showed a permeability reduction of ~94% for a period of two weeks. The injectivity in low permeability carbonate cores required more retardation compared with the injectivity in sandstone cores. The gel reduced the permeability to brine in Indiana limestone core by 99.8% for more than 5 months. Rheology of cured gel samples indicated that the gel strength needs about one day of curing in the core for the strength to stabilize. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41869.  相似文献   
107.
Naturally produced pyrrolamides, such as congocidine, are nonribosomal peptides that bind to the minor groove of DNA. Efforts to delineate the biosynthetic machinery responsible for their assembly have mainly employed genetic methods, and the enzymes responsible for their biosynthesis remain largely uncharacterized. We report the biochemical characterization of four proteins involved in congocidine formation: the adenylation‐thiolation (A–T) di‐domain Cgc18(1–610), its MbtH‐like partner SAMR0548, the AMP‐binding enzyme Cgc3*, and the T domain Cgc19. We assayed the ATP‐dependent activation of various commercially available and chemically synthesized compounds with Cgc18(1–610) and Cgc3*. We report the revised substrate specificities of Cgc18(1–610) and Cgc3*, and loading of 4‐acetamidopyrrole‐2‐carboxylic acid onto Cgc19. Based on these biochemical studies, we suggest a revised congocidine biosynthetic pathway.  相似文献   
108.
The most common method to deal with the huge production of municipal wastes is still the disposal in landfills which, however, generates a leachate with high contents of organic and nitrogen pollutants. Requirements must be fixed by law to control leachate release from such landfills, and effective treatment processes and technologies must be applied to reduce its impact on the environment. Biological processes for leachate treatment are discussed in this review, in the former part of which attention is paid to leachate formation and its qualitative and quantitative features, while the latter deals with the state‐of‐the‐art of the most effective biotechnological treatments presently employed. Processes, alternative methods, and technological improvements are compared, with special focus on novel technologies to remove nitrogen pollutants from leachate, highlighting advantages and drawbacks of each treatment.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号