首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260311篇
  免费   3601篇
  国内免费   822篇
电工技术   5156篇
综合类   330篇
化学工业   37291篇
金属工艺   10259篇
机械仪表   8492篇
建筑科学   6117篇
矿业工程   1082篇
能源动力   6406篇
轻工业   22897篇
水利工程   2568篇
石油天然气   3914篇
武器工业   68篇
无线电   34792篇
一般工业技术   50140篇
冶金工业   46767篇
原子能技术   5419篇
自动化技术   23036篇
  2021年   2041篇
  2019年   2043篇
  2018年   3475篇
  2017年   3535篇
  2016年   3734篇
  2015年   2320篇
  2014年   4055篇
  2013年   11310篇
  2012年   6569篇
  2011年   8890篇
  2010年   6992篇
  2009年   7860篇
  2008年   8685篇
  2007年   8634篇
  2006年   7823篇
  2005年   7153篇
  2004年   6901篇
  2003年   6742篇
  2002年   6387篇
  2001年   6478篇
  2000年   6176篇
  1999年   6266篇
  1998年   14317篇
  1997年   10319篇
  1996年   8132篇
  1995年   6424篇
  1994年   5732篇
  1993年   5597篇
  1992年   4563篇
  1991年   4217篇
  1990年   4061篇
  1989年   3790篇
  1988年   3628篇
  1987年   3174篇
  1986年   3073篇
  1985年   3620篇
  1984年   3387篇
  1983年   3036篇
  1982年   2859篇
  1981年   2959篇
  1980年   2766篇
  1979年   2657篇
  1978年   2505篇
  1977年   2960篇
  1976年   3574篇
  1975年   2321篇
  1974年   2321篇
  1973年   2325篇
  1972年   1853篇
  1971年   1747篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Processing lithium-ion battery (LIB) electrode dispersions with water as the solvent during primary drying offers many advantages over N-methylpyrrolidone (NMP). An in-depth analysis of the comparative drying costs of LIB electrodes is discussed for both NMP- and water-based dispersion processing in terms of battery pack $/kWh. Electrode coating manufacturing and capital equipment cost savings are compared for water vs. conventional NMP organic solvent processing. A major finding of this work is that the total electrode manufacturing costs, whether water- or NMP-based, contribute about 8–9% of the total pack cost. However, it was found that up to a 2?×?reduction in electrode processing (drying and solvent recovery) cost can be expected along with a $3–6?M savings in associated plant capital equipment (for a plant producing 100,000 10-kWh Plug-in Hybrid Electric Vehicle (PHEV) batteries) using water as the electrode solvent. This paper shows a different perspective in that the most important benefits of aqueous electrode processing actually revolve around capital equipment savings and environmental stewardship and not processing cost savings.  相似文献   
103.
The molten salt method was used to synthesise the MAX phase compounds Ti2AlC and Ti3AlC2 from elemental powders. Between 900–1000?°C, Ti2AlC was formed alongside ancillary phases TiC and TiAl, which decreased in abundance with increasing synthesis temperature. Changing the stoichiometry and increasing the synthesis temperature to 1300?°C resulted in formation of Ti3AlC2 alongside Ti2AlC and TiC. The type of salt flux used had little effect on the product formation. The reaction pathway for Ti2AlC was determined to be the initial formation of TiC1-x templating on the graphite and titanium aluminides.  相似文献   
104.
A novel glass-ceramic material based on albite type Na-rich feldspar has been synthesized by conventional ceramic process. High crystallinity, >94%?Vol.% is obtained by fast sintering which allows energy saving processing. Albite is the main crystalline phase and tetragonal SiO2 is a secondary phase. Electrical properties were examined by complex impedance, DC measurements, and dielectric breakdown test. Dielectric characterization shows a non-Debye type dielectric behavior with low dielectric constant, 4.6 at 1?MHz, low dielectric losses, (~10?3 at 1?MHz, and a large dielectric strength, ~60?kV/mm), that it is the largest value reported in ceramic insulators. Those dielectric properties are attained by the low glassy phase content in the samples and their unique micro-nanostructure. All these properties make this novel material a very promising candidate in the market of ceramic electrical insulator, highlighting for high-voltage applications.  相似文献   
105.
Russian Engineering Research - The theoretically possible reconfigurable parallel mechanisms are classified, in terms of the layout of guides on the base. Formulas are derived for the...  相似文献   
106.
107.
108.
109.
This study addresses the thermo‐diffusion and the diffusion‐thermo phenomena in a semi‐infinite absorbent channel whose walls are contracting/expanding, with heat source/sink effects. The governing partial differential equations with suitable boundary conditions are transformed to a system of dimensionless ordinary differential equations. An analytic solution of the problem has been found using a technique called homotopy analysis method (HAM). HAM gives consistently valid answers to the problem over an extensive variety of parameters and also provides better accuracy. To validate the analytical results, a comparison has been presented with a numerical solution calculated by using the parallel shooting method. The effects of dimensionless parameters, that is, deformation parameter, Reynolds number, Soret and Dufour numbers, and heat source/sink parameter on the expressions of velocity, temperature, and concentration profiles are analyzed graphically to understand the physics of the deformable channel. It has been noted that the velocity across the channel is higher for the expanding channel, as compared to that for the contracting channel. Also the Soret and Dufour number increases the temperature of the fluid, and decreases the concentration. The temperature profile has an increasing behavior in the case of heat source, and a decreasing behavior in the case of heat sink.  相似文献   
110.
Design and operation modes of double-junction monolithic lattice-matched solar cells based on the ZnSiP2/Si system of materials have been calculated. The effect of the photoactive region thickness and minority carrier lifetime in ZnSiP2 layers on the efficiency of conversion of the incident solar light energy into electrical power was determined. It is shown that solar cells based on ZnSiP2/Si heterostructures can provide efficiencies of 28.8% at AM1.5D, 100 mW/cm2, and 33.3% at AM1.5D, 200 W/cm2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号