首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   8篇
综合类   6篇
化学工业   109篇
金属工艺   3篇
建筑科学   24篇
轻工业   70篇
水利工程   1篇
无线电   2篇
一般工业技术   40篇
冶金工业   11篇
原子能技术   2篇
自动化技术   33篇
  2023年   3篇
  2022年   14篇
  2021年   17篇
  2020年   8篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   12篇
  2012年   23篇
  2011年   36篇
  2010年   22篇
  2009年   15篇
  2008年   23篇
  2007年   5篇
  2006年   12篇
  2005年   9篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   3篇
  1980年   2篇
  1979年   1篇
  1963年   1篇
排序方式: 共有301条查询结果,搜索用时 0 毫秒
101.
This work reports on the prospects of using luminescence spectroscopy as a non-destructive method for the characterization of ethylene vinyl acetate copolymer (EVA) crosslinking in photovoltaic (PV) modules. Luminescence has the potential to be easily applied in-line for monitoring purposes, e.g. during manufacturing. We investigate the correlation of luminescence, Raman spectroscopy and differential scanning calorimetry with the EVA crosslinking. We show that all these methods, including the luminescence method, show a good correlation with the hold time during the lamination process. Furthermore, time-dependent luminescence measurements are introduced. These make use of the fact that the luminescence decreases upon the ultraviolet irradiation during the measurement. In contrast to steady-state luminescence, this facilitates measurements that are inherently less dependent on possible interfering signal artifacts, as these may occur in industrial PV modules due to other components of the PV module.  相似文献   
102.
103.
High performance liquid chromatography equipped with an evaporative light scatter detector was carried out in order to proof the authenticity of cocoa butter. Signals of 17 characteristic triglycerides have been used to develop two chemometric models. PLS was applied for quantitation while neural nets were used for classification. The sample pool was divided in a training set of 18 and a prediction set of 14 samples. The samples included mixtures of several vegetable fats with cocoa butter. A 15 × 4 × 1 feed forward net could be trained and within the prediction set only 2 samples were not correctly assigned. A PLS model with 9 factors was applied and the mean prediction error was found to be 2.5%. The small number of samples was found to be sufficient to show the potential of this data evaluation. Results are expected to improve with a greater data pool.  相似文献   
104.
The gut–brain axis is a bidirectional communication system driven by neural, hormonal, metabolic, immunological, and microbial signals. Signaling events from the gut can modulate brain function and recent evidence suggests that the gut–brain axis may play a pivotal role in linking gastrointestinal and neurological diseases. Accordingly, accumulating evidence has suggested a link between inflammatory bowel diseases (IBDs) and neurodegenerative, as well as neuroinflammatory diseases. In this context, clinical, epidemiological and experimental data have demonstrated that IBD predisposes a person to pathologies of the central nervous system (CNS). Likewise, a number of neurological disorders are associated with changes in the intestinal environment, which are indicative for disease-mediated gut–brain inter-organ communication. Although this axis was identified more than 20 years ago, the sequence of events and underlying molecular mechanisms are poorly defined. The emergence of precision medicine has uncovered the need to take into account non-intestinal symptoms in the context of IBD that could offer the opportunity to tailor therapies to individual patients. The aim of this review is to highlight recent findings supporting the clinical and biological link between the gut and brain, as well as its clinical significance for IBD as well as neurodegeneration and neuroinflammation. Finally, we focus on novel human-specific preclinical models that will help uncover disease mechanisms to better understand and modulate the function of this complex system.  相似文献   
105.
The dispersion of commercial multiwalled carbon nanotubes (MWCNTs, Nanocyl™ NC7000) in chloroform and in polycarbonate (PC)-chloroform solutions was investigated by variation of the polymer concentration, MWCNT amount and sonication time and compared with PC/MWCNT composites, which were processed by melt mixing, subsequently dissolved in chloroform and dispersed via sonication under the same conditions. The sedimentation behaviour was characterised under centrifugal forces using a LUMiSizer® separation analyser. The space and time resolved extinction profiles as a measure of the stability of the dispersion and the particle size distribution were evaluated. Sonication up to 5 min gradually increases the amount of dispersed particles in the solutions. A significant improvement of the MWCNT dispersion in chloroform was achieved by the addition of PC indicating the mechanism of polymer chain wrapping around the MWCNTs. In dispersions of melt mixed PC/MWCNT composites the dispersion of MWCNTs is significantly enhanced already at a low sonication time of only 0.5 min due to very efficient polymer wrapping during the melt mixing process. However, the best dispersion quality does not lead to the highest electrical conductivity of thin composite films made of these PC/MWCNT dispersions.  相似文献   
106.
Composites of MWCNTs having each three different levels of matrix viscosity with five different polymers (polyamide 12, polybutylene terephthalate, polycarbonate, polyetheretherketone and low density polyethylene) were melt mixed to identify the general influence of matrix viscosity on the electrical properties and the state of MWCNT dispersion. Huge differences in the electrical percolation thresholds were found using the same polymer matrix with different viscosity grades. The lowest percolation thresholds were always found in the composites based on the low viscosity matrix. The state of primary MWCNT agglomerate dispersion increased with increasing matrix viscosity due to the higher input of mixing energy. TEM investigations showed nanoagglomerated structures in the low viscosity samples which are obviously needed to achieve low resistivity values. The effect of nanotube shortening was quantified using two different viscosity grades of polycarbonate. Due to the higher mixing energy input the nanotube shortening was more pronounced in the high viscosity matrix which partially explains the higher percolation threshold.  相似文献   
107.
Monolithic hexagonal BaCo1,3Ti1,3Fe9,4O19 ferrite multilayers sintered at 900°C exhibit a fine‐grained microstructure with permeability of μ′ = 16 and a resonance frequency fr ≥ 1GHz. Co‐firing of hetero‐laminates of ferrite with CT700 glass–ceramic LTCC tapes and with polycrystalline zinc titanate (ZT) LTCC tapes was studied. Co‐firing at 900°C of ferrite/CT700 leads to multilayers with cracks caused by substantial thermal expansion mismatch. Co‐fired ferrite/ZT multilayer laminates exhibit a permeability of μ′ = 16 and do not show any defects. Hexagonal ferrite multilayer inductor elements were integrated into ZT‐based multilayer LTCC modules and co‐fired at 900°C with Ag metallization.  相似文献   
108.
Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen (14)C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total (14)C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors.  相似文献   
109.
Passive samplers for polar organic compounds often use a polyethersulfone (PES) membrane to retain the particulate sorbent material (e.g., in a POCIS; polar organic chemical integrative sampler) or to reduce the sampling rate and thus extend the kinetic regime (e.g., in a Chemcatcher). The transport kinetics over the PES membrane are evaluated here in a short-term (6 days) and a long-term (32 days) experiment with POCIS and Chemcatchers. Passive samplers were placed in a channel with flowing river water that was spiked with 22 organic chemicals including pharmaceuticals, pesticides and biocides; with logK(ow) (logarithmic octanol-water partitioning coefficient) values between -2.6 and 3.8. Samplers were removed at intervals and membranes and sorbent material were extracted and analyzed with LC-MS/MS. Uptake kinetics of the compounds fell between two extremes: (1) charged chemicals and chemicals of low hydrophobicity did not accumulate in PES and rapidly transferred to the sorbent (e.g., diclofenac) and (2) more hydrophobic chemicals accumulated strongly in the PES and appeared in the sorbent after a lag-phase (e.g., diazinon and diuron). Sorption kinetics were modeled with a three-compartment first-order kinetic model to determine uptake and elimination rate constants and partitioning coefficients. Water PES partitioning coefficients fitted with the model correlated well with experimentally determined values and logK(ow). Sampling rates of Chemcatcher (0.02-0.10 L/d) and POCIS (0.02-0.30 L/d) showed similar patterns and correlated well. Thus the samplers are interchangeable in practical applications. Longer lag-phases may pose problems when calculating time-weighted average aqueous concentrations for short passive sampling windows and for a correct integrative sampling of fluctuating concentrations.  相似文献   
110.
Wood furfurylation is a modification method that improves several wood properties. Thereby wood is impregnated with a solution of furfuryl alcohol, catalysts and water, in general. The objective of this study was to understand the penetration of furfuryl alcohol into wood. Furthermore, a possible relationship between the substance amount and the swelling behaviour should be determined. To this end microscopic investigations were conducted to describe the temporal process of penetration and swelling. It was found that the swelling coefficients differ at the microscopic and macroscopic level. The microscopic swelling can reach twice the values of macroscopic swelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号