This paper examines the value for research and policy development of rental tenancy data collected by the South Australian Rental Tenancy Tribunal (RTT). The data held by the RTT are for South Australia only, but comparable organisations exist in a number of other states, such as New South Wales and Victoria. Lessons learned from South Australia could serve as a pilot for the development of a new (semi-) national framework for monitoring the private rental market. 相似文献
Traditionally acid mine water is neutralised with lime. Limestone is a cheaper alternative for such applications. A case study showed that limestone can be used effectively to replace lime for the neutralization of arsenic rich acid water. The cost of limestone treatment is 45.8% less than that of lime. The acidity can be removed from 33.5 to 0.06 g/L (as CaCO3). The study also showed no significant differences in the TCLP characteristics of the resultant sludge when water is treated with lime or with limestone. Sludge from the limestone treatment process can be disposed of on a non-hazardous landfill site. An erratum to this article can be found at 相似文献
Polymerase chain reaction (PCR) is widely used in biochemical analysis to amplify DNA and RNA in vitro. The PCR process is highly temperature sensitive, and thermal management has an important role in PCR operation in reaching the required temperature set points at each step of the process. The goal of this research is to achieve a thermal technique to rapidly increase the heating/cooling thermal cycling speed while maintaining a uniform temperature distribution throughout the substrate containing the aqueous nucleic acid sample. In this work, an innovative microfluidic PCR thermal cycler, which utilizes a properly arranged configuration filled with a porous medium, is investigated. Various effective parameters that are relevant in optimizing this flexible heat exchanger are investigated such as heat exchanger geometry, flow rate, conductive plate, the porous matrix material, and utilization of thermal grease. An optimized case is established based on the effects of the cited parameters on the temperature distribution and the required power for circulating the fluid in the heat exchanger. The results indicate that the heating/cooling temperature ramp of the proposed PCR heat exchanger is considerably higher (150.82 °C/s) than those in the literature. In addition, the proposed PCR offers a very uniform temperature in the substrate while utilizing a low power. 相似文献
Three layered particleboard is a widely used and important plate material used for construction and furniture production. This implies that material parameters such as strength and elasticity in bending are determined. However, usually little or nothing is known about the fracture properties. This paper has the goal to investigate the material fracture properties in the three layers and discuss the linear and non-linear fracture mechanical properties with regard to board production and its consequences for cutting. It could be shown that the fracture properties of the solid boards are dominated by the bigger chips in the core of the plate and the fracture properties of boards are best characterized by the specific fracture energy. The linear elastic- and the non-linear elastic fracture mechanics approach of the outer layers shows essentially similar results, represented by brittle fracture. For the prediction of the cutting performance, linear elastic fracture mechanics parameters are considered to be more appropriate because these parameters describe the limit of linear elastic behaviour and therefore the case of smallest deformation zone. High stress concentration at the tool tip and low permanent deformation in the bulk material give the best cutting quality. 相似文献
The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process. 相似文献
Emotion is considered a physiological state that appears whenever a transformation is observed by an individual in their environment or body. While studying the literature, it has been observed that combining the electrical activity of the brain, along with other physiological signals for the accurate analysis of human emotions is yet to be explored in greater depth. On the basis of physiological signals, this work has proposed a model using machine learning approaches for the calibration of music mood and human emotion. The proposed model consists of three phases (a) prediction of the mood of the song based on audio signals, (b) prediction of the emotion of the human-based on physiological signals using EEG, GSR, ECG, Pulse Detector, and finally, (c) the mapping has been done between the music mood and the human emotion and classifies them in real-time. Extensive experimentations have been conducted on the different music mood datasets and human emotion for influential feature extraction, training, testing and performance evaluation. An effort has been made to observe and measure the human emotions up to a certain degree of accuracy and efficiency by recording a person’s bio- signals in response to music. Further, to test the applicability of the proposed work, playlists are generated based on the user’s real-time emotion determined using features generated from different physiological sensors and mood depicted by musical excerpts. This work could prove to be helpful for improving mental and physical health by scientifically analyzing the physiological signals.
The design of and training for complex systems requires in-depth understanding of task demands imposed on users. In this project, we used the knowledge engineering approach (Bowles et al., 2004) to assess the task of mowing in a citrus grove. Knowledge engineering is divided into four phases: (1) Establish goals. We defined specific goals based on the stakeholders involved. The main goal was to identify operator demands to support improvement of the system. (2) Create a working model of the system. We reviewed product literature, analyzed the system, and conducted expert interviews. (3) Extract knowledge. We interviewed tractor operators to understand their knowledge base. (4) Structure knowledge. We analyzed and organized operator knowledge to inform project goals. We categorized the information and developed diagrams to display the knowledge effectively. This project illustrates the benefits of knowledge engineering as a qualitative research method to inform technology design and training. 相似文献
In the world of OTIS, an online Internet School for occupational therapists, students from four European countries were encouraged to work collaboratively through problem-based learning by interacting with each other in a virtual semi-immersive environment. This paper describes, often in their own words, the experience of European occupational therapy students working together across national and cultural boundaries. Collaboration and teamwork were facilitated exclusively through an online environment, since the students never met each other physically during the OTIS pilot course. The aim of the paper is to explore the observations that (1) there was little interaction between students from different tutorial groups and (2) virtual teamwork developed in each of the cross-cultural tutorial groups. Synchronous data from the students was captured during tutorial sessions and peer-booked meetings and analyzed using the qualitative constructs of immersion, presence and reflection in learning. The findings indicate that immersion was experienced only to a certain extent. However, students found both presence and shared presence, within their tutorial groups, to help collaboration and teamwork. Other evidence suggests that communities of interest were established. Further study is proposed to support group work in an online learning environment. It is possible to conclude that collaborative systems can be designed, which encourage students to build trust and teamwork in a cross cultural online learning environment.This revised version was published online in March 2005 with corrections to the cover dateFunded by the European Union through the TENTelecom programme. 相似文献