首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   14篇
  国内免费   1篇
电工技术   3篇
化学工业   79篇
金属工艺   12篇
机械仪表   16篇
建筑科学   13篇
能源动力   22篇
轻工业   22篇
无线电   7篇
一般工业技术   79篇
冶金工业   4篇
原子能技术   4篇
自动化技术   11篇
  2023年   5篇
  2022年   3篇
  2021年   7篇
  2020年   11篇
  2019年   5篇
  2018年   7篇
  2017年   10篇
  2016年   10篇
  2015年   5篇
  2014年   16篇
  2013年   18篇
  2012年   24篇
  2011年   24篇
  2010年   20篇
  2009年   18篇
  2008年   11篇
  2007年   13篇
  2006年   5篇
  2005年   7篇
  2004年   9篇
  2003年   10篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1965年   2篇
  1962年   1篇
排序方式: 共有272条查询结果,搜索用时 62 毫秒
41.
Programmable soft materials exhibiting dynamically reconfigurable, reversible, fast, and latchable shape transformation are key for applications ranging from wearable tactile actuators to deployable soft robots. Multimorph soft actuator sheets with high load‐bearing capacity are reported, capable of bending on multiple axis, made by combining a single dielectric elastomer actuator (DEA) with two layers of shape memory polymers (SMPs) fibers and an array of stretchable heaters. The rigidity of the SMP fibers can be reduced by two orders of magnitude by Joule heating, thus allowing the orientation and location of soft and hard regions to be dynamically defined by addressing the heaters. When the DEA is then actuated, it bends preferentially along the soft axis, enabling the device to morph into multiple distinct configurations. Cooling down the SMPs locks these shape changes into place. A tip deflection angle of over 300° at 5 kV is achieved with a blocking force of over 27 mN. Devices using two antagonistic DEAs are also reported that attain more complex shapes. Multimorphing is demonstrated by gripping objects with different shapes. An analytical model is developed to determine the design parameters that offers the best trade‐off between large actuation and high holding forces.  相似文献   
42.
A pre-concentration method was developed for determination of trace amounts of cadmium, copper and lead in water samples by FAAS after coprecipitation by using potassium 4-methylpiperidinedithiocarbamate (K4-MPDC) as a chelating agent and Bi(III) as a carrier element. This procedure is based on filtration of the solution containing precipitate on a cellulose nitrate membrane filter following Cd(II), Cu(II) and Pb(II) coprecipitation with Bi(III)4-MPDC and then the precipitates together with membrane filter were dissolved in concentrated nitric acid. The metal contents of the final solution were determined by FAAS. Several parameters including pH of sample solution, amount of carrier element and reagent, standing time, sample volume for precipitation and the effects of diverse ions were examined. The accuracy of the method was tested with standard reference material (MBH, C31XB20 and CRM BCR-32) and Cd, Cu and Pb added samples. Determination of Cd, Cu and Pb was carried out in sea water, river water and tap water samples. The recoveries were >95%. The relative standard deviations of determination were less than 10%.  相似文献   
43.
44.
Poly(2-hydroxyethyl methacrylate) [poly(HEMA)] membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (α-α′-azobis-isobutyronitrile, AIBN). The triazine dye Cibacron Blue F3GA was attached as an affinity ligand to poly(HEMA) membranes, covalently. These affinity membranes with a swelling ratio of 58% and containing 10.7 mmol Cibacron Blue F3GA/m2 were used in the albumin adsorption studies. After dye-attachment, Zn(II) ions were chelated within the membranes via attached-dye molecules. Different amounts of Zn(II) ions [650–1440 mg Zn(II)/m2] were loaded on the membranes by changing the initial concentration of Zn(II) ions and pH. Bovine serum albumin (BSA) adsorption on these membranes from aqueous solutions containing different amounts of BSA at different pH was investigated in batch reactors. The nonspecific adsorption of BSA on the poly(HEMA) membranes was negligible. Cibacron Blue F3GA attachment significantly increased the BSA adsorption up to 92.1 mg BSA/m2. Adsorption capacity was further increased when Zn(II) ions were attached (up to 144.8 mg BSA m2). More than 90% of the adsorbed BSA was desorbed in 1 h in the desorption medium containing 0.5M NaSCN at pH 8.0 and 0.025M EDTA at pH 4.9. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 657–664, 1998  相似文献   
45.
Amine-functionalized sol-gels were investigated for the enrichment and purification of phosphopeptides from digested protein mixture solutions. Tetramethylorthosilicate (TMOS) and N'[3-(trimethoxysilyl)-propyl]-diethylenetriamine (TPDA) were used in a 1:1 mole ratio in the production of amine-functionalized sol-gels. The sol-gel network was then used for phosphopeptide enrichment. Phosphopeptide enrichment onto the synthesized amine-functionalized sol-gels was performed using an enolase digested peptide mixture, a β-casein digested peptide mixture, as well as these digested peptide mixtures contaminated 50-fold with bovine serum albumin (BSA). Moreover, phosphopeptide enrichment was successfully performed using nonfat milk as a highly contaminated and complex material. In each phosphopeptide enrichment and purification process, only phosphopeptides were enriched and separated from the other digested peptides. Phosphopeptides were adsorbed onto the amine-functionalized sol-gels at pH 4.0 and eluted at pH 1.0 using trifluoroacetic acid (TFA). For phosphopeptide analysis by MALDI-MS, a 2,5-dihydroxybenzoic acid matrix containing 1.0% phosphoric acid was used to overcome the degradation of phosphopeptides and provide high intensity phosphopeptide protonated molecular ion signal intensities. It was also found that phosphopeptide detection limits were improved to approximately 10 femtomoles. For rapid and specific phosphopeptide enrichment and purification, sol-gel materials were placed in a 10 μL pipet tip with glass wool on either side. Phosphopeptide enrichment from digested peptide mixtures was performed in a very short time (less than 1 min) at subpicomole levels using this novel lab-in-a-pipet-tip approach.  相似文献   
46.
Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al2O3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 °C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 °C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.  相似文献   
47.
Undoped ZnO and Mn-doped ZnO (MZO) films with 0.25, 0.50, and 0.75?mol pct were synthesized onto glass substrates by sol-gel spin-coating technique, and the effects of Mn on structural, morphologic, and optical properties were investigated. The XRD results indicate that the films have wurtzite structure with polycrystalline nature. However, the dominant peak was (002) diffraction peak for all samples; other diffraction peaks with less intensity such as (100), (101), (102), (110), (103), (112), and (004) were observed for the undoped ZnO. The lattice parameter values of MZO thin films were lower than that of the undoped ZnO. Plane stress values indicated that the films had the tensile stress. A decrease in the grain sizes was observed with the increasing Mn mole?percent. The optical transmission values were found to be 82?pct for the undoped ZnO and 80, 78, and 75?pct for the MZO with 0.25, 0.50, and 0.75?mol?pct, respectively, at the wavelength of 405?nm. The optical band gap values decreased from 3.287 to 3.270?eV, the surface roughness values increased from 58.13 to 60.67?nm, Urbach energy values increased??a 18.3-meV difference in Urbach energy was observed??and in addition, the steepness parameters decreased with increasing Mn content from 0 to 0.75?mol?pct.  相似文献   
48.
Abstract

This work attempts to discover, by experimentation, some of the parameters governing cutting efficiency in perspex of a continuous CO2 laser. The experimentation took the form of taking cuts in specimen pieces with the laser. While varying the parameters of speed of cut and position of the focal plane of the laser beam relative to the surface of the perspex, all other parameters were kept constant. These experiments produced conclusive ideas of the optimum position of the focal plane and the best speeds for cutting perspex at the same time producing the best cut quality obtainable. When the theoretically predicted minimum cut width is compared with the experimentally obtained results, the agreement is found to be almost exact.  相似文献   
49.
The laser cutting of metallic substrates results in the development of thermal stresses around the cut edges. Depending on the cutting speed, laser power intensity, and material properties, stress levels reaching and exceeding the yielding limit of the substrate material can result. In the present study, the laser cutting situation is simulated and temperature as well as thermal stress fields are computed for steel, Inconel 625, and Ti-6Al-4V alloy. The cutting speed of the laser is considered to be constant and a constant temperature heat source with a focused spot diameter is assumed along the kerf surface at the cut edge, resembling the laser heat source. The equations for energy and thermal stresses are solved numerically using the finite element method (FEM). It is found that the temperature decays sharply in the vicinity of the cut edges and that the equivalent stress attains high values in this region. Inconel 625 results in the highest thermal stress levels in the vicinity of the cut edges and is then followed by steel and titanium alloy.  相似文献   
50.
Poly(styrene-divinylbenzene), PS-DVB, microbeads were modified with 8-hydroxyquinoline (8-HQ) following nitration, reduction of  NO2 to NH2, and conversion of NH2 to diazonium salt. Characterization of pristine,  NO2,  NH2,  NN+Cl, and 8-QH functional groups modified microbeads was made by Fourier transform-infrared spectrometry (FTIR) and porosimetry. Total reflectron-X-ray florescence spectrometer (TXRF) was used to test the affinity of the 8-HQ modified microbeads to toxic metal ions. 8-HQ-modified microbeads were used to examine the adsorption capacity, recovery, preconcentration, and the matrix elimination efficiency for Pb(II), Cd(II), Ni(II), and Co(II) ions as a function of changing pH, initial metal-ion concentrations, and also equilibrium adsorption time of the studied metal ions. Preconcentration factors for the studied toxic metal ions were found to be more than 500-fold and recovery between 93.8% and 100.6%. Ultratrace toxic metal-ion concentrations in sea water were determined easily by using modified microbeads. Reference sea-water sample was used for the validation of the method, and it was found that recovery, preconcentration, and the matrix elimination were performed perfectly. For the desorption of the toxic metal ions, 3M of HNO3 was used and desorption ratio shown to be more than 96%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号