Service-oriented computing is gaining momentum as the next technological tool to leverage the huge investments in Web application
development. The expected large number of Web services poses a set of new challenges for efficiently accessing these services.
We propose an integrated service query framework that facilitates users in accessing their desired services. The framework
incorporates a service query model and a two-phase optimization strategy. The query model defines service communities that
are used to organize the large and heterogeneous service space. The service communities allow users to use declarative queries
to retrieve their desired services without worrying about the underlying technical details. The two-phase optimization strategy
automatically generates feasible service execution plans and selects the plan with the best user-desired quality. In particular,
we present an evolutionary algorithm that is able to “co-evolve” multiple feasible execution plans simultaneously and allows
them to compete with each other to generate the best plan. We conduct a set of experiments to assess the performance of the
proposed algorithms. 相似文献
This paper presents a newly developed specimen for testing fiber-reinforced polymer (FRP) composite reinforcements under cyclic loading. In this configuration the FRP rod is completely encased in concrete. The specimen is formed of three discrete blocks. The end blocks serve as anchors for the rod, whereas the central block provides the concrete environment to the part of the rod where failure is expected to occur. The specimen can be easily handled and uses a very simple test setup that can be adapted to all universal testing machines. An extensive research program has been initiated by the writers to study the influence of varying parameters on the fatigue performance of FRP products. Results of demonstration tests performed on a proprietary carbon FRP rod using the specimen developed are presented in this paper. The results show consistent findings and great potential for using the specimen in different situations such as tensile and cyclic testing of FRP reinforcements. 相似文献
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars. 相似文献
In the future fifth generation networked society, devices will suffer from the asynchronous multi-carrier effect which impacts the user’s quality of experience. This paper investigates the timing misalignment effect on interference level in the context of a cognitive radio (CR) network. Our study considers both multicarrier techniques orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC). The originality of our paper consists in proposing a simple but accurate analytical model to evaluate our system’s performance in terms of interference level, signal-to-interference-plus-noise ratio and bit error rate. Specifically, two case studies are considered, a single-user case (one primary user and one secondary user) and a multi-user case with exact theoretical expressions of interference level. We had also made a comparison between OFDM and FBMC techniques. The most striking observation to emerge from our results is that the asynchronous interference is inversely propositional to timing offset even for the multi-user case, and that differences in the normalized interference level between the single/multi-user cases is barely perceived for the FBMC technique, proving its efficiency. Our simulations’ results had further strengthened our confidence in the suggested model. It shows that FBMC is best suited for CR networks since it provides BER improvements compared to OFDM.
Flexural behavior and serviceability performance of 24 full-scale concrete beams reinforced with carbon-, glass-, and aramid-fiber-reinforced-polymer (FRP) bars are investigated. The beams were 3,300?mm long with a rectangular cross section of 200?mm in width and 300?mm in depth. Sixteen beams were reinforced with carbon-FRP bars, four beams were reinforced with glass-FRP bars, two beams were reinforced with aramid-FRP bars, and two were reinforced with steel, serving as control specimens. Two types of FRP bars with different surface textures were considered: sand-coated bars and ribbed-deformed bars. The beams were tested to failure in four-point bending over a clear span of 2,750?mm. The test results are reported in terms of deflection, crack-width, strains in concrete and reinforcement, flexural capacity, and mode of failure. The experimental results were compared to the available design codes. 相似文献
This paper presents convection behavior investigation of CMOS MEMS convective accelerometers using both analytical and FEM techniques. In a first part, a newly developed accelerometer 3D model is used in FEM simulations to model convection behavior as a function of design geometry and temperature. Using various sizes of two different cover shapes, sensitivity reading and its maximum position in cavity are found to be largely affected by both cover size and shape. In addition, a sensor with cavity width of 600 μm produces sensitivity saturation starting at a cavity depth of 200 μm, for both cover shapes. Using FEM data and curve fitting, differential temperature is claimed to be linearly linked to the effective heater temperature to the power of 1.7. Using the same cavity design and from computed heating efficiency values, we found that a 60 μm width heater offers the best efficiency. This cavity and heater designs give an optimal detector position of 120 μm from heater center along the sensitive axis. Moreover, dual axis accelerometers are found to be more power efficient than single axis ones. In the second part, we present Hardee’s spherical model and investigate its possible application on convective accelerometers. It is shown that inner and outer isotherms deformation, caused by accelerometer design and convection process, should be modeled by including sensor geometry parameters in the derived governing equations. Moreover, Hardee’s biasing temperature relation has to be revised if it is to be used for convective accelerometers. 相似文献
Perceptual hashing is conventionally used for content identification and authentication. It has applications in database content search, watermarking and image retrieval. Most countermeasures proposed in the literature generally focus on the feature extraction stage to get robust features to authenticate the image, but few studies address the perceptual hashing security achieved by a cryptographic module. When a cryptographic module is employed [1], additional information must be sent to adjust the quantization step. In the perceptual hashing field, we believe that a perceptual hashing system must be robust, secure and generate a final perceptual hash of fixed length. This kind of system should send only the final perceptual hash to the receiver via a secure channel without sending any additional information that would increase the storage space cost and decrease the security. For all of these reasons, in this paper, we propose a theoretical analysis of full perceptual hashing systems that use a quantization module followed by a crypto-compression module. The proposed theoretical analysis is based on a study of the behavior of the extracted features in response to content-preserving/content-changing manipulations that are modeled by Gaussian noise. We then introduce a proposed perceptual hashing scheme based on this theoretical analysis. Finally, several experiments are conducted to validate our approach, by applying Gaussian noise, JPEG compression and low-pass filtering. 相似文献
Nanoparticles of nickel ferrites (NiFe2O4) were synthesized at different temperature of synthesis (25, 50 and 80 °C) through the chemical co-precipitation method. The synthesized powders were characterized using X-ray diffraction for crystallite size and lattice parameter calculation. It reveals the presence of cubic spinel structure of ferrites with crystallite size between 29 and 41 nm. Transmission electron microscopy and scanning electron microscopy showed uniform distribution of ferrite particles with some agglomeration. The Fourier-transform infrared spectroscopy showed absorption bonds, which were assigned to the vibration of tetrahedral and octahedral complexes. Raman spectroscopy is used to verify that we have synthesized ferrite spinels and determines their phonon modes. The thermal decomposition of the NiFe2O4 was investigated by TGA/DTA. The optical study UV–visible is used to calculate the band gap energy. Magnetic measurements of the samples were carried out by means of vibrating sample magnetometer and these studies reveal that the formed nickel ferrite exhibits ferromagnetic behavior. Photoluminescence showed three bands of luminescence located at 420, 440 and 535 nm. The photocatalytic properties of nickel ferrite (NiFe2O4) nanoparticles were evaluated by studying the photodecomposition of methyl orange as organic pollutant models and showed a good photocatalytic activity. 相似文献