Monte Carlo (MC) methods can accurately simulate scatter in X-ray imaging. However, when low noise scatter projections have to be simulated these MC simulations tend to be very time consuming. Rapid computation of scatter estimates is essential for several applications. The aim of the work presented in this paper is to speed up the estimation of noise-free scatter projections while maintaining their accuracy. Since X-ray scatter projections are often rather smooth, an approach is chosen whereby a short MC simulation is combined with a data fitting program that is robust to projection truncation and noise. This method allows us to estimate the smooth scatter projection rapidly. The speed-up and accuracy achieved by using the fitting algorithm were validated for the projection simulation of a small animal X-ray CT system. The acceleration that can be obtained over standard MC simulations is typically two orders of magnitude, depending on the accuracy required. The proposed approach may be useful for rapid simulation of patient and animal studies and for correction of the image-degrading effects of scatter in tomography. 相似文献
Three series of fine limestone aggregate, alkali-activated blast furnace slag (AAS) concretes were fabricated and tested; two through activation with waterglass/NaOH solution, of which one included NaCl as a retarding agent, and one activated by Na2CO3. Each of these series was made up of three formulae containing different amounts of Al2O3. The compressive strengths of the series activated by waterglass/NaOH after 28 days were ≈65 ± 5.3 MPa, a 22% increase compared to previously reported formulae containing no additional Al2O3. Increasing the amount of Al2O3 did not further increase strength, however. The Na2CO3-activated formulae had strengths of ≈35 ± 3 MPa after 28 days, representing no increase in strength over formulae not containing Al2O3 previously reported. X-ray diffraction showed the main binding phase to be calcium silicate hydrate (C–S–H) gel, as is commonly found in ordinary Portland cement (OPC). Fourier transform infrared spectroscopy showed little difference from the previously reported results for formulae not containing Al2O3 and strongly resemble the spectra reported elsewhere for C–S–H. Electron microscopy, coupled with energy dispersive spectroscopy, showed the cementing phase to be a single homogenous phase—not a mixed system of geopolymer and C–S–H gel—with a lower volume fraction of unreacted slag than formulae without Al2O3. The reason for the increase in strength of Al2O3-containing formulae is unclear, but is unlikely to be ascribed to the formation of large amounts of ‘geopolymers’ and may be related to a possible increase in reaction temperature of between 2 and 5°C, depending on amount of additive. 相似文献
Results are presented from X-ray absorption spectroscopy based analysis of As, Cr, and V speciation within samples of bauxite ore processing residue (red mud) collected from the spill site at Ajka, Western Hungary. Cr K-edge XANES analysis found that Cr is present as Cr(3+) substituted into hematite, consistent with TEM analysis. V K-edge XANES spectra have E(1/2) position and pre-edge features consistent with the presence of V(5+) species, possibly associated with Ca-aluminosilicate phases. As K-edge XANES spectra identified As present as As(5+). EXAFS analysis reveals arsenate phases in red mud samples. When alkaline leachate from the spill site is neutralized with HCl, 94% As and 71% V are removed from solution during the formation of amorphous Al-oxyhydroxide. EXAFS analysis of As in this precipitate reveals the presence of arsenate Al-oxyhydroxide surface complexes. These results suggest that in the circumneutral pH, oxic conditions found in the Torna and Upper Marcal catchments, incorporation and sorption, respectively, will restrict the environmental mobility of Cr and As. V is inefficiently removed from solution by neutralization, therefore, the red mud may act as a source of mobile V(5+) where the red mud deposits are not removed from affected land. 相似文献
Connexin43 (Cx43) is the most abundantly expressed member of the connexin (gap junction protein) family and the only one so far identified in mouse Leydig cell gap junctions. Mice lacking Cx43 were used to investigate its role in testicular androgen production and regulation. Testes from term fetuses were grafted under the kidney capsules of castrated adult males. After 3 weeks, serum from host mice was analyzed for androgens. In order to test their response to stimulation, the grafted testes were incubated in vitro with varying concentrations of LH and their androgen end products analyzed. Incubation with radiolabeled progesterone was followed by high performance liquid chromatography to quantify the androgen-intermediate metabolites. Radiolabeled testosterone in the presence of NADPH was used to determine the activity of testosterone-metabolizing enzymes 17beta-hydroxysteroid dehydrogenase (17betaHSD), 5alpha-reductase (5alphaR), and 3alpha-hydroxysteroid dehydrogenase (3alpha HSD). Serum androgen levels did not differ between hosts carrying wild-type versus null mutant grafts although Cx43-deficient testes had more 17betaHSD and 5alphaR activity than wild-type controls. Furthermore, the genotype of grafted testes did not influence LH-stimulated androgen production in vitro. These results indicate that the steroidogenic function of Leydig cells is not compromised by the absence of Cx43, perhaps because other gap junction proteins are present. Dye transfer experiments demonstrated that Cx43-deficient Leydig cells retain intercellular coupling, indicating that Cx43 is not the only protein contributing to their gap junctions. Thus, despite their prominence in Leydig cells, Cx43 gap junctions are not essential for androgen production. 相似文献
Particles generated by wood machining have a proven impact on the health of users and woodworkers. The aim of this study was to quantify and describe wood particles in solid and gas phases to reliably and reproducibly characterise these emissions. First, we developed an experimental device that produced particles from solid wood and wood-based panels using portable machine tools. The objective was to study the particles emitted by wood machining while avoiding ambient pollution. Based on own technical specifications, the experimental system was defined and composed of various elements that integrated treatment of inlet air through wood machining to the analysis section that allows solid and gas phases. The first experiments were carried out in sanding and sawing modes on materials used in construction, including solid wood (spruce) and composite panels (particle board (PB), oriented strand board (OSB), and medium density fibreboard (MDF)). Wood-based panels showed more emissive behaviour than solid wood, both for the solid phase and the gas phase. These tests validate the feasibility of generating and measuring particles and emissions of volatile organic compounds (VOCs). Further modifications to the experimental device would enable us to integrate additional devices, such as toxicological ones, to better understand the impact of these wood particles on the health of woodworkers.
This study investigated, for the first time, the masticatory capability of preschool children using natural foods, and the impact of an early oral health alteration (early childhood caries: ECC) on the granulometry of ready-to-swallow food boluses. Thirteen children with ECC were compared to 13 preschool children with a healthy oral condition. Oral health criteria and NOT-S scores (Nordic Orofacial dysfunction Test-Screening) were recorded. For each child, number of masticatory cycles (Nc), chewing time (Ti), and frequency (Fq = Nc/Ti) were recorded during mastication of raw carrot (CAR), cheese (CHS) and breakfast cereals (CER) samples. Food boluses were collected by stopping children at their food-dependent individual swallowing threshold (Nc), and the median food bolus particle size value (D50) was calculated. Correlations were sought between oral health and masticatory criteria. In the ECC group, mean Fq values were significantly decreased for all three foods (p ≤ .001) and mean D50 values were significantly increased (p ≤ .001) compared to the control group (i.e., D50 CAR = 4,384 μm ± 929 vs. 2,960 μm ± 627). These alterations were related to the extent of ECC. The NOT-S mean global score was significantly increased in children with ECC (2.62 ± 1.37 vs. 1 ± 0.91 in the control group, p ≤ .01), due to “Mastication and swallowing” domain impairment. This study gives granulometric normative values for three foods in preschool children and shows the impact of ECC on D50 values. The progression of children's masticatory capability after dental treatment, and the impact of such modifications of sensory input on future eating habits should be explored. 相似文献
The aim of this study was to identify the main amino acids responsible for the production of esters in ciders. The experiments were carried out in apple must and synthetic must. The amino acids were analysed by high‐performance liquid chromatography and the volatile compounds by gas chromatography. Aspartate, asparagine and glutamate positively influenced the production of esters in the cider models and were used in the experiments with mixtures. The response surface generated by the proposed model yielded two regions that maximized the production of esters. In addition, the combination of aspartate and glutamate predicted a higher production. The optimal suggested concentrations were 43.4% of aspartate and 56.6% of glutamate for 120 mg/L of total nitrogen. The apple must supplemented with these two amino acids resulted in four times more esters than in the same cider without supplementation, demonstrating the effectiveness of the proposed model. 相似文献