首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
电工技术   1篇
化学工业   11篇
金属工艺   1篇
机械仪表   5篇
矿业工程   1篇
能源动力   5篇
无线电   2篇
一般工业技术   9篇
冶金工业   5篇
自动化技术   12篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2000年   1篇
  1996年   1篇
  1990年   2篇
排序方式: 共有52条查询结果,搜索用时 267 毫秒
11.
Pregnancy is associated with elevated maternal levels of cell-free DNA of neutrophil extracellular trap (NET) origin, as circulatory neutrophils exhibit increased spontaneous NET formation, mainly driven by G-CSF and finely modulated by sex hormones. The postpartum period, on the other hand, involves physiological alterations consistent with the need for protection against infections and fatal haemorrhage. Our findings indicate that all relevant serum markers of neutrophil degranulation and NET release are substantially augmented postpartum. Neutrophil pro-NETotic activity in vitro is also upregulated particularly in post-delivery neutrophils. Moreover, maternal puerperal neutrophils exhibit a strong pro-NETotic phenotype, associated with increased levels of all key players in the generation of NETs, namely citH3, MPO, NE, and ROS, compared to non-pregnant and pregnant controls. Intriguingly, post-delivery NET formation is independent of G-CSF in contrast to late gestation and complemented by the presence of TF on the NETs, alterations in the platelet activity status, and activation of the coagulation cascade, triggered by circulating microparticles. Taken together, our results reveal the highly pro-NETotic and potentially procoagulant nature of postpartum neutrophils, bridging an overt immune activation with possible harmful thrombotic incidence.  相似文献   
12.
Optical and Raman scattering studies on SnS nanoparticles   总被引:1,自引:0,他引:1  
Tin sulfide nanoparticles were synthesized through wet chemical route. Structure and phase purity were confirmed by powder XRD. Morphology and size were identified from TEM and AFM. The room temperature photoluminescence spectrum shows the band edge emission at 1.57 eV. The direct and indirect band gaps are estimated from UV-vis-NIR absorption spectrum as 1.78 and 1.2 eV, respectively. Blue shift of 0.48 eV observed for direct transition and 0.2 eV for indirect transition as compared to bulk band gap is due to quantum confinement effect. The Raman spectrum of SnS nanoparticles shows all the predicted Raman modes which show shift towards lower wave number side in comparison with those of the SnS single crystal. This is attributed to phonon confinement.  相似文献   
13.
14.
Efficient spectrum utilization is a promising technique for a prolonged unused radio frequency (RF) spectrum in a wireless network. In this paper, an adaptive spectrum sharing cognitive radio (CR) network has been proposed consisting of a primary user (PU) and secondary user transmitter (SU ? Tx) that communicates with secondary user receiver (SU ? Rx) via multiantenna‐based proactive decode‐and‐forward (DF) relay selection scheme. In our model, strategically an adaptable joint venture on underlay/overlay protocol is defined based on channel occupancy using spectrum sensing technique. Here, secondary transmitters (i.e., source transmitter) continuously sense the PU activities by energy detector and can simultaneously transmit to secondary receivers. Depending on sensing result secondary transmitters automatically switches in underlay mode if PU is active otherwise operates in overlay mode. The advantage of this scheme is that the joint mode of transmission allows the SUs to maximize their transmission rate. The outage performance at SU ? Rx and closed‐form expressions of joint underlay/overlay protocol has been evaluated. The power control policies at different transmitter nodes are taken care of. With the same diversity order, a trade‐off between multiantenna and multirelay is shown. This comparison shows improvement in outage behavior when the count in relays surpasses the number of antennas. Finally, the analytical model of smart efficient spectrum utilization without harming license users in CR is validated by MATLAB simulation.  相似文献   
15.
Hydrogen peroxide (H2O2) is an important commodity chemical and its demand is growing significantly in the chemical synthesis due to its “green” character. Currently, H2O2 is produced almost exclusively by the anthraquinone auto-oxidation (AO) process. The AO process involves indirect oxidation of hydrogen and thus avoids potentially explosive H2/O2 mixture. However, this large-scale process presents significant safety issues associated with the transport of bulk H2O2. Moreover, the AO process can hardly be considered an environmentally friendly method. In view of this, more economical and environmentally cleaner routes have been explored for the production of H2O2. The liquid-phase catalytic direct synthesis of H2O2 from H2 and O2 offers an attractive green technology for small-scale/on-site production of H2O2. However, the direct synthesis process suffers from two major drawbacks: (i) potential hazards associated with H2/O2 mixtures and (ii) poor selectivity for H2O2 because the catalysts used for H2O2 synthesis are also active for its decomposition and hydrogenation to water as well as for H2 combustion. These serious issues and the recent developments in the direct H2O2 synthesis are discussed in this review. The roles of protons (H+) and halide ions in promoting the H2O2 selectivity are also examined in detail.  相似文献   
16.
Alzheimer’s disease (AD) is the most frequent cause of age-related neurodegeneration and cognitive impairment, and there are currently no broadly effective therapies. The underlying pathogenesis is complex, but a growing body of evidence implicates mitochondrial dysfunction as a common pathomechanism involved in many of the hallmark features of the AD brain, such as formation of amyloid-beta (Aβ) aggregates (amyloid plaques), neurofibrillary tangles, cholinergic system dysfunction, impaired synaptic transmission and plasticity, oxidative stress, and neuroinflammation, that lead to neurodegeneration and cognitive dysfunction. Indeed, mitochondrial dysfunction concomitant with progressive accumulation of mitochondrial Aβ is an early event in AD pathogenesis. Healthy mitochondria are critical for providing sufficient energy to maintain endogenous neuroprotective and reparative mechanisms, while disturbances in mitochondrial function, motility, fission, and fusion lead to neuronal malfunction and degeneration associated with excess free radical production and reduced intracellular calcium buffering. In addition, mitochondrial dysfunction can contribute to amyloid-β precursor protein (APP) expression and misprocessing to produce pathogenic fragments (e.g., Aβ1-40). Given this background, we present an overview of the importance of mitochondria for maintenance of neuronal function and how mitochondrial dysfunction acts as a driver of cognitive impairment in AD. Additionally, we provide a brief summary of possible treatments targeting mitochondrial dysfunction as therapeutic approaches for AD.  相似文献   
17.
Multimedia Tools and Applications - Intrauterine fetal hypoxia is one of the leading cause of perinatal mortality and morbidity. This can eventually lead to severe neurological damage like cerebral...  相似文献   
18.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   
19.
Journal of Computational Electronics - The performance of three-dimensional integrated circuits primarily depends on the filler material used in the through-silicon vias (TSVs). The most widely...  相似文献   
20.
The rate of protein synthesis is about seven and fifteen amino acids per second, in the eukaryotic and the bacterial ribosome, respectively. Hence, a few minutes is required to synthesize a polypeptide of an average length. This is much longer than the time needed for the hydrophobic collapse (folding) to take place. So a polypeptide gets enough time to form its local secondary to tertiary structures cotranslationally and put such segments in proper order while in association with the ribosome, unless something prevents its entire length from folding. As reported earlier, ribosomes from prokaryotes, eukaryotes, and mitochondria act as molds for protein folding, and each mold has a set of recognition sites for all proteins. More specifically, the mold is the peptidyl transferase center (PTC), a part of the large RNA of the large ribosomal subunit. Specific amino acids from different random coil regions in a protein interact with specific nucleotides in the PTC, which brings the entire length of the protein into the small space of the PTC mold. The mold thus helps to stabilize the entropy-driven collapsed state of the polypeptide. The process also divides the protein into small segments; each segment is connected at two ends with two nucleotides and can fold in the ribosomal environment. The segments dissociate in such a sequence that the organization proceeds hierarchically from the core of the globular protein radially towards the outer surface. Then the protein dissociates from the ribosome in a “folding competent state” which does the final fine tuning in folding outside the ribosome. While the ribosomal contact and release are over in 1–2 minutes in vitro, the fine tuning takes about 5–10 minutes. Release from the ribosome needs no added energy factor from outside, like ATP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号