A micro-mesoporous ZSM-5/MCM-41 composite molecular sieve (ZM13) was synthesized and tested as an FCC catalyst additive to enhance the yield of propylene from catalytic cracking of vacuum gas oil (VGO). The catalytic performance of the additive was assessed using a commercial equilibrium USY FCC catalyst (E-Cat) in a fixed-bed micro-activity test unit (MAT) at 520?°C and various catalyst/oil ratios. MCM-41, ZSM-5 and two ZSM-5/MCM-41 composites were systematically characterized by complementary techniques such as XRD, BET, FTIR and SEM. The characterization results showed that the composites contained secondary building unit with different textural properties compared to pure ZSM-5 and MCM-41. MAT results showed that the VGO cracking activity of E-Cat did not decrease by using these additives. The highest propylene yield of 12.2 wt% was achieved over steamed ZSM-5/MCM-41 composite additive (ZM13) compared with 8.6 wt% over conventional ZSM-5 additive at similar gasoline yield penalty. The enhanced production of propylene over composite additive was attributed to its mesopores that suppressed secondary and hydrogen transfer reactions and offered easier transport and accessibility to active sites. Gasoline quality was improved by the use of all additives except MCM-41, as octane rating increased by 6?C12 numbers. 相似文献
Waste heat recovery (WHR) for internal combustion engines in vehicles using Organic Rankine cycle (ORC) has been a promising technology. The operation of the ORC WHR system in supercritical conditions has a potential to generate more power output and thermal efficiency compared with the conventional subcritical conditions. However, in supercritical conditions, the heat transfer process in the evaporator, the key component of the ORC WHR system, becomes unpredictable as the thermo-physical properties of the working fluid change with the temperature. Furthermore, the transient heat source from the vehicle’s exhaust makes the operation of the WHR system difficult. We investigated the performance of the ORC WHR system at supercritical conditions with engine’s exhaust data from real city and highway drive cycles. The effects of operating variables, such as refrigerant flow rates, evaporator and condenser pressure, and evaporator outlet temperature, on the performance indicators of the WHR system in supercritical conditions were examined. Simulation of operating parameters and the boundary of the WHR system are also included in this paper.
Substituted oxathiolane and thioether derivatives have been synthesized from an allylic oxo fatty acid ester. The reaction
of methyl 4-oxo-trans-2-octadecenoate with 3-mercaptopropan-1,2-diol (1-thioglycerol) affords methyl 4-(3′-hydroxymethyl-1′,4′-oxathiolane)-2(3)-(O-mercaptopropan-1″,2″-diol)-octadecanoate
(II), methyl 4-oxo-2(3)-(O-mercaptopropan-1′,2′-diol)-octadecanoate (III), methyl 4-(3′-hydroxy-l′,5′-oxathiane)-2 (3)-(S-mercaptopropan-1″,2″-diol)-octadecanoate
(IV), methyl 4-oxo-2(3)-(S-mercaptopropan-1′, 2′diol)-octadecanoate (V) and methyl 4-(3′-hydroxymethyl-1′, 4′-oxathiolane)-2(3)-(S-mercaptopropan-1″,
2″-diol)-octadecanoate (VI). Structures of the individual reaction products have been established on the basis of spectral
data and microanalyses. 相似文献
A novel graft copolymer of [2-(methacryloyloxy)ethyl] trimethylammonium chloride onto poly(vinyl alcohol) has been synthesized
and it is cross-linked by glutaraldehyde for the investigation of its efficiency in removing Cr(VI) from aqueous solution.
The chemical nature of the ion-exchange resin has been elucidated with the help of chemical test, Fourier transform infrared,
thermo gravimetric analysis and DTA. Particle size, surface area, ion-exchange capacity, optimum pH, reaction time and temperature
for Cr(VI) extraction were determined. Chromium(VI) adsorption kinetics, isotherm and thermodynamics have been studied. A
plausible mechanism for chromium ion-exchange has been suggested. 相似文献
Recycling of PET was examined using hydrolytic depolymerization in an alkaline solution under microwave irradiation. The reaction was carried out in a sealed microwave reactor in which the pressure and temperature were controlled and recorded. The main products were the monomers TPA and EG. The effect of reaction temperature, time, amount of PET and alkaline concentration on the degree of PET depolymerization and TPA recovery was investigated. Microwave irradiation was found to reduce the time needed to achieve a specific degradation of PET significantly, with almost complete depolymerization occurring in 30 min at 180 °C and only 46 W of microwave power. Using a phase transfer catalyst (TOMAB) resulted in the same amount of unreacted PET but at significantly lower depolymerization temperatures.