首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   1篇
化学工业   5篇
轻工业   3篇
无线电   1篇
一般工业技术   1篇
冶金工业   890篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2003年   4篇
  2000年   2篇
  1999年   36篇
  1998年   306篇
  1997年   186篇
  1996年   89篇
  1995年   59篇
  1994年   37篇
  1993年   61篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1978年   3篇
  1977年   15篇
  1976年   40篇
  1975年   1篇
  1955年   1篇
排序方式: 共有900条查询结果,搜索用时 0 毫秒
771.
The oculocerebrorenal syndrome of Lowe (OCRL) is a multisystem disorder characterized by congenital cataracts, mental retardation, and renal Fanconi syndrome. The OCRL1 gene, which, when mutated, is responsible for OCRL, encodes a 105-kD Golgi protein with phosphatidylinositol (4,5)bisphosphate (PtdIn[4,5]P2) 5-phosphatase activity. We have examined the OCRL1 gene in 12 independent patients with OCRL and have found 11 different mutations. Six were nonsense mutations, and one a deletion of one or two nucleotides that leads to frameshift and premature termination. In one, a 1.2-kb genomic deletion of exon 14 was identified. In four others, missense mutations or the deletion of a single codon were found to involve amino acid residues known to be highly conserved among proteins with PtdIns(4,5)P2 5-phosphatase activity. All patients had markedly reduced PtdIns(4,5)P2 5-phosphatase activity in their fibroblasts, whereas the ocrl1 protein was detectable by immunoblotting in some patients with either missense mutations or a codon deletion but was not detectable in those with premature termination mutations. These results confirm and extend our previous observation that the OCRL phenotype results from loss of function of the ocrl1 protein and that mutations are generally heterogeneous. Missense mutations that abolish enzyme activity but not expression of the protein will be useful for studying structure-function relationships in PtdIns(4,5)P2 5-phosphatases.  相似文献   
772.
773.
Occipital neuralgia, a painful condition thought to be caused by nerve entrapment, has been described in the general population. Athletes, particularly those who participate in collision sports, such as football, may be predisposed to this condition. An illustrative case is presented along with discussion of the differential diagnosis and treatment of this type of headache.  相似文献   
774.
775.
776.
Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by solid-phase procedures and purified to near homogeneity. CD, nmr, and modeling analysis indicated that in aqueous media the first extracellular loop peptide E1(107-125), the third intracellular loop peptide I3(231-243), and the carboxyl terminus peptide I4(350-372) were mostly disordered. In contrast, the second extracellular loop peptide E2(191-206) assumed a well-defined structure in aqueous medium and the sixth transmembrane domain peptide receptor M6(252-269, C252A) was highly helical in trifluoroethanol/water (4:1), exhibiting a kink at Pro258. A synthetic peptide containing a sequence similar to that of the sixth transmembrane domain of a constitutively active alpha-factor receptor M6(252-269, C252A, P258L) in which Leu replaces Pro258 exhibited significantly different biophysical properties than the wild-type sequence. In particular, this peptide had very low solubility and gave CD resembling that of a beta-sheet structure in hexafluoroacetone/water (1:1) whereas the wild-type peptide was partially helical under identical conditions. These results would be consistent with the hypothesis that the constitutive activity of the mutant receptor is linked to a conformational change in the sixth transmembrane domain. The study of the receptor segments also indicate that peptides corresponding to loops of the alpha-factor receptor do not appear to assume turn structures.  相似文献   
777.
778.
Patients who have undergone allogeneic bone marrow transplantation (allo-BMT) are susceptible to a variety of opportunistic infectious complications in the months to years after engraftment. Impaired in vitro T-cell functions have been documented in these patients, and these T-cell dysfunctions contribute to the prolonged immune deficiency after allo-BMT. In the present study, we examined the expression of CD26 as well as the reconstitution of CD26-mediated T-cell costimulation via the CD3 and CD2 pathways at various times in patients aged greater than 18 years after CD6-positive, T-cell depleted allo-BMT. We found that the percentage of CD26- and CD3-positive cells, as well as the levels of expression of both antigens, was lower than in normal controls during the first 4 months after CD6-depleted allo-BMT. Subsequently, the amount of lymphocytes expressing CD3 and CD26 and the quantitative surface expression of CD3 and CD26 were not significantly different in patients and normal controls. Functional studies showed that CD26-mediated T-cell proliferation via the CD3 pathway was considerably improved and almost reached normal levels by 1 year, whereas recovery of CD26-mediated T-cell proliferation via the CD2 pathway was delayed for at least 2 years after CD6-depleted allo-BMT. As CD26 involvement in the regulation of human thymocyte activation is restricted preferentially to the CD3 pathway--unlike its involvement with both CD3 and CD2 pathways of peripheral T cells--our results suggest that the different effects of CD26-mediated costimulation via the CD3 and CD2 pathways after CD6-depleted allo-BMT may be a reflection of peripheral T-cell immaturity in those individuals, similar to that seen in mature medullary thymocytes or cord T lymphocytes.  相似文献   
779.
The identification and characterization of epitopes of human T-lymphotropic virus type 1 (HTLV-I), which elicit an effective humoral or cell-mediated immune response, remains a central obstacle to the development of a peptide-based vaccine against the virus infection. The objective of the studies presented here was to examine the influence of N-linked glycosylation on peptide structure and immunogenicity. We engineered the 233-253 sequence of gp46 of HTLV-I to contain an N-acetylglucosamine (GlcNAc) residue at Asn244. Secondary structure prediction using computer algorithms indicated that this peptide may contain a beta-turn at residues 242-246. Recent work with model glycopeptides suggests that beta-turn conformation in peptides may be induced, and probably is stabilized, by the presence of even a single sugar residue. In the present study, the structures of the 233-253 peptide, SC1, and the 233-253(Asn244-GlcNAc) glycopeptide, SC2, were determined. Similar conformation was exhibited by both the glycosylated and nonglycosylated peptide displaying a beta-turn at residues 243-246 and extended-chain structure at the peptide/glycopeptide termini. Both peptides were engineered into chimeric constructs with a promiscuous T-cell epitope from measles virus and were used as immunogens in rabbits. Both chimeric peptides were highly immunogenic in rabbits, producing high-titered antibodies as early as primary + three weeks. The antibodies generated against either construct were able to bind to whole virus (ELISA) and to gp46 (radioimmunoprecipitation assay). Additionally, human sera of individuals known to be positive for HTLV-I recognized both the glycosylated and nonglycosylated constructs. It appears that the 233-253 peptide is able to adopt a conformation that mimics the structure in native gp46, and addition of a GlcNAc residue at Asn244 does not affect the conformational preference or stability of this construct; nor does glycosylation alter immunogenicity but instead appears to enhance immune recognition.  相似文献   
780.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号