首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
  国内免费   4篇
电工技术   1篇
综合类   1篇
化学工业   9篇
金属工艺   2篇
机械仪表   7篇
能源动力   4篇
无线电   4篇
一般工业技术   20篇
自动化技术   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1988年   3篇
  1986年   1篇
排序方式: 共有49条查询结果,搜索用时 541 毫秒
11.
An optimization method for parameter estimation is presented with the Kolmogorov-Smirnov distance used as the objective. A step-by-step implementation procedure is given. The method is demonstrated by estimating the parameters for three-parameter Weibull distributions from three different samples (with different sample sizes). A comparison of the proposed method and the usual methods such as the least-squares method, the matching moments method and the maximum likelihood method shows that more reasonable estimates of the parameters are given by the proposed optimization method. Then, the proposed method is successfully extended to estimate the parameters for the sum of two three-parameter Weibull distributions. Based on these findings, a new procedure for selection of population distribution and parameter estimation is presented.  相似文献   
12.
使用直接混合法制备三氧化二铝纳米流体,探讨三氧化二铝纳米流体在不同浓度(0%,0.1%,0.5%,1.0%,ω)和温度(10~40 ℃)下粘滞度的变化规律.使用Brookfield DVⅢ 流变仪进行测量,发现添加入纳米粒子于去离子水中所得三氧化二铝纳米流体符合牛顿粘性定律,为牛顿流体.任一纳米流体的粘滞系数随着温度的上升而下降,呈反比关系,而随浓度上升而增加,呈正比关系,在温度40 ℃和浓度为1.0%(ω)时粘滞度增大比率可达到25.2%.而压降在任何浓度的纳米流体均与去离子水相差大约5 MPa,显示加入纳米粒子对压降的影响不明显.当温度愈高时,压降也随着降低,代表未来可将纳米流体应用层面推向更高温的领域.  相似文献   
13.
开发了一种低成本快速创新的检测方法,主要装置为紫外线/可见光分光光度计及石英比色槽,较以往使用气相层析/质谱仪、傅立叶转换红外线光谱仪检测光触媒材料对气体降解效能简单又快速.实验时先将特定浓度气体注入一个密闭的石英比色槽中,再将比色槽置入紫外线/可见光分光光度计内进行检测,以获得特定浓度气体吸收光谱图及制备检量线,氨气检量线浓度范围为1×10-6~4×10-5.在光触媒材料进行异相光催化降解氨气效能分析检测时,将两种TiO2纳米触媒材料定量在石英基板上,置入比色槽内并注入氨气.同时将比色槽用UV光照射,进行降解实验,随后再将比色槽用紫外线/可见光分光光谱仪进行测试,由吸收光谱图中吸收强度,比对检量线,获得气体浓度变化以及光触媒材料对气体的降解效率.实验结果显示,真空潜弧合成系统自制的SANSS-TiO2光触媒,可将氨气的浓度降至原有的10.18%,商用纳米TiO2,仅能降至原有的49.7%.本研究已成功的建立简单,快速可靠的解低浓度氨气效能检测技术.  相似文献   
14.
Abstract

A kinetic study of the Wittig reaction for synthesizing stilbene is carried out by reacting benzaldehyde (C6H5CHO) with benzyltri‐phenylphosphonium bromide (BTPPB) in the NaOH(aq)/CH2Cl2(org) two‐phase reaction system. The rate of reaction depends on the agitation speed, the temperature and the concentrations of C6H5CHO, BTPPB, and NaOH. When the agitation speed is low, the reaction is highly affected by interface diffusion. The reactant rate constant, based on the SN 2 substitution mechanism and the activation energy are also determined. It is found that the activation energy obtained from the present study (Ea =11.97 kcal/mole) is less than that of the previously documented data (Ea =12.984 kcal/mole) in which benzyltriphenylphosphonium chloride (BTPPC) was used as a phase transfer catalyst.  相似文献   
15.
16.
This article presents the development of an innovative approach using the vacuum submerged arc machining with aid of enhanced ultrasonic vibration to manufacture nanoparticles. The Arc Spray Nanoparticle Synthesis System (ASNSS) previously designed by the NTUT’s Nano Laboratory has been successfully developed to generate nanoparticles. In this proposed process, a titanium bar, as the electrode, is melted and vaporized in distilled water, used as an insulating liquid. Meanwhile, the ultrasonic vibration is applied to the electrode to remove the vaporized metal powders rapidly from the melting zone. The vaporized metal particles are then rapidly quenched by the designed cooling system, thus nanocrystalline particles nucleated and formed. This study discusses the the influence of the ultrasonic amplitude and various process variables such as pulse duration, peak current, and dielectric liquid temperature on TiO2nanoparticles suspension.  相似文献   
17.
This paper investigates the kernel entropy based extended Kalman filter (EKF) as the navigation processor for the Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS). The algorithm is effective for dealing with non-Gaussian errors or heavy-tailed (or impulsive) interference errors, such as the multipath. The kernel minimum error entropy (MEE) and maximum correntropy criterion (MCC) based filtering for satellite navigation system is involved for dealing with non-Gaussian errors or heavy-tailed interference errors or outliers of the GPS. The standard EKF method is derived based on minimization of mean square error (MSE) and is optimal only under Gaussian assumption in case the system models are precisely established. The GPS navigation algorithm based on kernel entropy related principles, including the MEE criterion and the MCC will be performed, which is utilized not only for the time-varying adaptation but the outlier type of interference errors. The kernel entropy based design is a new approach using information from higher-order signal statistics. In information theoretic learning (ITL), the entropy principle based measure uses information from higher-order signal statistics and captures more statistical information as compared to MSE. To improve the performance under non-Gaussian environments, the proposed filter which adopts the MEE/MCC as the optimization criterion instead of using the minimum mean square error (MMSE) is utilized for mitigation of the heavy-tailed type of multipath errors. Performance assessment will be carried out to show the effectiveness of the proposed approach for positioning improvement in GPS navigation processing.  相似文献   
18.
This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle filter (CPF), which is an estimation algorithm that combines the cubature Kalman filter (CKF) and the particle filter (PF). The CPF is essentially a realization of PF where the third-degree cubature rule based on numerical integration method is adopted to approximate the proposal distribution. It is beneficial where the CKF is used to generate the importance density function in the PF framework for effectively resolving the nonlinear/non-Gaussian problems. Based on the spherical-radial transformation to generate an even number of equally weighted cubature points, the CKF uses cubature points with the same weights through the spherical-radial integration rule and employs an analytical probability density function (pdf) to capture the mean and covariance of the posterior distribution using the total probability theorem and subsequently uses the measurement to update with Bayes’ rule. It is capable of acquiring a maximum a posteriori probability estimate of the nonlinear system, and thus the importance density function can be used to approximate the true posterior density distribution. In Bayesian filtering, the nonlinear filter performs well when all conditional densities are assumed Gaussian. When applied to the nonlinear/non-Gaussian distribution systems, the CPF algorithm can remarkably improve the estimation accuracy as compared to the other particle filter-based approaches, such as the extended particle filter (EPF), and unscented particle filter (UPF), and also the Kalman filter (KF)-type approaches, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF) and CKF. Two illustrative examples are presented showing that the CPF achieves better performance as compared to the other approaches.  相似文献   
19.
This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.  相似文献   
20.
Near-tip stress and strain fields for power-law hardening orthotropic materials under plane-strain conditions are presented. Plastic orthotropy is described by Hill's quadratic yield function. The angular variations of these HRR-type fields depend on a single parameter which specifies the state of plastic orthotropy. Near-tip fields for highly orthotropic materials differ substantially from the fields for isotropic materials. Mode I (symmetric) and mode II (anti-symmetric) solutions for different degrees of plastic orthotropy are given. The angular stress distributions for the low-hardening material agree remarkably well with the plane-strain slip-line fields. Based on the singularity fields, effective stress contours are constructed. The applicability of these fields in the context of a fiber-reinforced composite containing a macroscopic flaw is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号