首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   53篇
电工技术   10篇
化学工业   136篇
金属工艺   14篇
机械仪表   8篇
建筑科学   17篇
能源动力   31篇
轻工业   50篇
水利工程   10篇
无线电   46篇
一般工业技术   158篇
冶金工业   32篇
原子能技术   10篇
自动化技术   131篇
  2024年   1篇
  2023年   13篇
  2022年   15篇
  2021年   31篇
  2020年   22篇
  2019年   18篇
  2018年   24篇
  2017年   30篇
  2016年   30篇
  2015年   25篇
  2014年   32篇
  2013年   62篇
  2012年   38篇
  2011年   71篇
  2010年   37篇
  2009年   45篇
  2008年   44篇
  2007年   29篇
  2006年   25篇
  2005年   19篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1998年   6篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有653条查询结果,搜索用时 0 毫秒
81.
The paper shows the different methods to attach a molecule to detect streptavidin to a dielectric particle made of a rare-earth oxide core and a polysiloxane shell containing fluorescein. First, the detection of streptavidin binding on a biotinylated gold substrate can be achieved in three ways: the shift of the surface plasmon resonance of the substrate and the double luminescence (organic and inorganic) of the core/shell particle. Second, these detections are efficient even after elimination upon thermal annealing of all the undesired molecules that skew the assays. Finally, the particle that ballasts the protein enhances its binding kinetics and increases the localized surface plasmon resonance shift that detects the binding.  相似文献   
82.
Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed inside the cell cytoplasm at the single-particle and single-color-center level, assessed by time-correlation intensity measurements. Improvement of the nanoparticle signal-to-noise ratio inside the cell is achieved using a pulsed-excitation laser and time-resolved detection taking advantage of the long radiative lifetime of the color-center excited state as compared to cell autofluorescence. The internalization pathways are also investigated, with endosomal marking and colocalization analyses. The low colocalization ratio observed proves that nanodiamonds are not trapped in endosomes, a promising result in prospect of drug delivery by these nanoparticles. Low cytotoxicity of these nanoparticles in this cell line is also shown.  相似文献   
83.
84.
Weidmann D  Reburn WJ  Smith KM 《Applied optics》2007,46(29):7162-7171
Following the recent development of a ground-based prototype quantum cascade laser heterodyne radiometer operating in the midinfrared, atmospheric ozone profile retrievals from a solar occultation measurement campaign performed at the Rutherford Appleton Laboratory on 21 September 2006 are presented. Retrieval is based on the optimal estimation method. High resolution (0.0073 cm(-1)) atmospheric spectra recorded by the laser heterodyne radiometer and covering a microwindow (1033.8-1034.5 cm(-1)) optimized for atmospheric ozone measurements were used as measurement vectors. As part of the evaluation of this novel instrument, a comprehensive analysis of the retrievals is presented, demonstrating the high potential of quantum cascade laser heterodyne radiometry for atmospheric sounding. Vertical resolutions of 2 km near the ground and about 3 km in the stratosphere were obtained. The information content of the retrieval was found to be up to 48 bits, which is much higher than any other passive ground-based instrument. Frequency mismatches of several absorption peaks between the forward model and experimental spectra have been observed and significantly contribute to the retrieval noise error in the upper-troposphere lower-stratosphere region. Retrieved ozone vertical profiles were compared to ozonesonde data recorded at similar latitudes. The agreement is generally excellent except for the 20 to 25 km peak in ozone concentration, where ozonesonde data were found to be 20% lower than the amount retrieved from the laser heterodyne radiometer spectra. Quantum cascade laser based heterodyne radiometry in the midinfrared has been demonstrated to provide high spectral resolution and unprecedented vertical resolution for a passive sounder in a highly compact and mechanically simple package.  相似文献   
85.
The alternate deposition of exponentially and linearly growing polyelectrolyte multilayers leads to the formation of multicompartment films. In this study, a new system consisting in nanometer-sized multilayer barriers deposited on or between multilayer compartments was designed to respond to mechanical stimuli and to act as nanovalves. The diffusion of polyelectrolytes through the barrier from one compartment to another can be switched on/off by tuning the mechanical stretching and thereby opening or closing nanopores in the barrier. This work represents a first step toward the design of chemically or biologically active films responding to mechanical stresses.  相似文献   
86.
Fluorescence microscopy is essential for a detailed understanding of cellular processes; however, live-cell preservation during imaging is a matter of debate. In this study, we proposed a guide to optimize advanced light microscopy approaches by reducing light exposure through fluorescence lifetime (τ) exploitation of red/near-infrared dyes. Firstly, we characterized key instrumental elements which revealed that red/near-infrared laser lines with an 86x (Numerical Aperture (NA) = 1.2, water immersion) objective allowed high transmission of fluorescence signals, low irradiance and super-resolution. As a combination of two technologies, i.e., vacuum tubes (e.g., photomultiplier) and semiconductor microelectronics (e.g., avalanche photodiode), type S, X and R of hybrid detectors (HyD-S, HyD-X and HyD-R) were particularly adapted for red/near-infrared photon counting and τ separation. Secondly, we tested and compared lifetime-based imaging including coarse τ separation for confocal microscopy, fitting and phasor plot analysis for fluorescence lifetime microscopy (FLIM), and lifetimes weighting for enhanced stimulated emission depletion (STED) nanoscopy, in light of red/near-infrared multiplexing. Mainly, we showed that the choice of appropriate imaging approach may depend on fluorochrome number, together with their spectral/lifetime characteristics and STED compatibility. Photon-counting mode and sensitivity of HyDs together with phasor plot analysis of fluorescence lifetimes enabled the flexible and fast imaging of multi-labeled living H28 cells. Therefore, a combination of red/near-infrared dyes labeling with lifetime-based strategies offers new perspectives for live-cell imaging by enhancing sample preservation through acquisition time and light exposure reduction.  相似文献   
87.
In this work, we fabricate gold nanowires with well controlled critical dimensions using a recently demonstrated facile approach termed nanoskiving. Nanowires are fabricated with lengths of several hundreds of micrometers and are easily electrically contacted using overlay electrodes. Following fabrication, nanowire device performance is assessed using both electrical and electrochemical characterization techniques. We observe low electrical resistances with typical linear Ohmic responses from fully packaged nanowire devices. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid demonstrate scan rate independence up to 1000 mV s(-1). Electrochemical responses are excellently described by classical Butler-Volmer kinetics, displaying a fast, heterogeneous electron transfer kinetics, k(0) = 2.27 ± 0.02 cm s(-1), α = 0.4 ± 0.01. Direct reduction of hydrogen peroxide is observed at nanowires across the 110 pM to 1 mM concentration range, without the need for chemical modification, demonstrating the potential of these devices for electrochemical applications.  相似文献   
88.
Sustainable water management is a global challenge for the 21st century. One key aspect remains protection against urban flooding. The main objective is to ensure or maintain an adequate level of service for all inhabitants. However, level of service is still difficult to assess and the high-risk locations difficult to identify. In this article, we propose a methodology, which (i) allows water managers to measure the service provided by the urban drainage system with regard to protection against urban flooding; and (ii) helps stakeholders to determine effective strategies for improving the service provided. One key aspect of this work is to use a database of sewer flood event records to assess flood risk. Our methodology helps urban water managers to assess the risk of sewer flooding; this approach does not seek to predict flooding but rather to inform decision makers on the current level of risk and on actions which need to be taken to reduce the risk. This work is based on a comprehensive definition of risk, including territorial vulnerability and perceptions of urban water stakeholders. This paper presents the results and the methodological contributions from implementing the methodology on two case studies: the cities of Lyon and Mulhouse.  相似文献   
89.
The quantum states of nano-objects can drive electrical transport properties across lateral and local-probe junctions. This raises the prospect, in a solid-state device, of electrically encoding information at the quantum level using spin-flip excitations between electron spins. However, this electronic state has no defined magnetic orientation and is short-lived. Using a novel vertical nanojunction process, these limitations are overcome and this steady-state capability is experimentally demonstrated in solid-state spintronic devices. The excited quantum state of a spin chain formed by Co phthalocyanine molecules coupled to a ferromagnetic electrode constitutes a distinct magnetic unit endowed with a coercive field. This generates a specific steady-state magnetoresistance trace that is tied to the spin-flip conductance channel, and is opposite in sign to the ground state magnetoresistance term, as expected from spin excitation transition rules. The experimental 5.9 meV thermal energy barrier between the ground and excited spin states is confirmed by density functional theory, in line with macrospin phenomenological modeling of magnetotransport results. This low-voltage control over a spin chain's quantum state and spintronic contribution lay a path for transmitting spin wave-encoded information across molecular layers in devices. It should also stimulate quantum prospects for the antiferromagnetic spintronics and oxides electronics communities.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号