首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   11篇
电工技术   3篇
综合类   1篇
化学工业   49篇
金属工艺   7篇
机械仪表   5篇
建筑科学   6篇
能源动力   5篇
轻工业   20篇
石油天然气   2篇
无线电   30篇
一般工业技术   53篇
冶金工业   31篇
自动化技术   23篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   4篇
  2018年   14篇
  2017年   12篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   15篇
  2012年   6篇
  2011年   13篇
  2010年   10篇
  2009年   8篇
  2008年   14篇
  2007年   14篇
  2006年   2篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   10篇
  1997年   7篇
  1996年   11篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
41.
Remote‐controlled drug depots represent a highly valuable tool for the timely controlled administration of pharmaceuticals in a patient compliant manner. Here, the first pharmacologically controlled material that allows for the scheduled induction of a medical response in mice is described. To this aim, a novel, humanized biohybrid material that releases its cargo in response to a small‐molecule stimulus licensed for human use is developed. The functionality of the material in mice is demonstrated by the remote‐controlled delivery of a vaccine against the oncogenic human papillomavirus type 16. It is shown that the biohybrid depot‐mediated immunoprotection is equivalent to the classical multi‐injection‐based vaccination. These results indicate that this material can be used as a universal remote‐controlled vehicle for the patient‐compliant delivery of vaccines and pharmaceuticals.  相似文献   
42.
This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.  相似文献   
43.
Daoud  O. Alani  O. 《Communications, IET》2009,3(4):520-529
Peak-to-average power ratio (PAPR) is a major drawback in most multi-carrier communication techniques such as orthogonal frequency division multiplex system (OFDM). OFDM consists of lots of independent modulated subcarriers, as a result the amplitude of such a signal can have very large values. These large peaks increase the amount of intermodulation distortion resulting in an increase in the error rate. The PAPR of an OFDM signal can be reduced in several ways: selective mapping, Golay sequences, cyclic coding, clipping and filtering, and multiple signal representation techniques. The authors have improved the performance of the OFDM system by using low-density parity-check (LDPC) codes as an alternative to turbo coding in mitigating the PAPR problem which has been used in the pervious works of the authors. The authors present the design for the proposed (LDPC) code technique that achieves good error correction performance and is used to lower the PAPR in a multiple-input multiple-output OFDM system. The simulation results show that 6-60- reduction in PAPR over current values in the literature can be achieved depending on the system type.  相似文献   
44.
Using the Gaussian Rényi-2 entropy, we analyse the behaviour of two different aspects of quantum correlations (entanglement and quantum discord) in two optomechanical subsystems (optical and mechanical). We work in the resolved sideband and weak coupling regimes. In experimentally accessible parameters, we show that it is possible to create entanglement and quantum discord in the considered subsystems by quantum fluctuations transfer from either light to light or light to matter. We find that both mechanical and optical entanglement are strongly sensitive to thermal noises. In particular, we find that the mechanical one is more affected by thermal effects than that optical. Finally, we reveal that under thermal noises, the discord associated with the entangled state decays aggressively, whereas the discord of the separable state (quantumness of correlations) exhibits a freezing behaviour, seeming to be captured over a wide range of temperature.  相似文献   
45.
The feasibility of incorporating fly ash cenospheres in die cast magnesium alloy has been demonstrated. The effects of fly ash cenosphere additions on the microstructure and some of the salient physical and mechanical properties of magnesium alloy (AZ91D) metal matrix composites were investigated. The control AZ91D alloy and associated composites, containing 5, 10, and 15 wt.% of fly ash cenospheres (added), were synthesized using a die casting technique. A microstructural comparison showed that microstructural refinement – occurred due to the fly ash additions and became more pronounced with an increase in the percentage of the fly ash added. The metal matrix areas nearer to the fly ash particles exhibited a greater degree of refinement than was observed in the areas further away from these particles. Both filled and unfilled fly ash cenospheres, and porosity were observed in the composite microstructures. The composite specimen densities decreased and the coefficient of thermal expansion did not change significantly as the volume percent of fly ash was increased within the range investigated. The hardness values of the composite specimens exhibited an increase in proportion to the increase in percentage of added fly ash. The tensile strength of the composites also increased as the concentration of fly ash cenospheres was increased. In contrast, the Young’s modulus of these composite samples, as measured by non-destructive pulse-echo method, decreased as the percentage of fly ash in the composite was increased. SEM micrographs of the tensile fracture surfaces showed broken cenospheres on the fracture surface and evidence of ‘pull outs’, where fly ash particles were previously embedded in the matrix. Compression testing results showed that the presence of 5 wt.% cenospheres decreased the compressive strength and compressive yield strength of the composite relative to that of the AZ91D matrix alloy. Surprisingly, a significant change in compression strength was not observed for the composites with 10 and 15 wt.% cenospheres in comparison to the AZ91D matrix alloy. In contrast to the tensile tests, no cenosphere remnants were observed on the compressive test fracture surface of the composites. This observation suggests that the fracture of the composite was initiated within the AZ91D matrix by normal void nucleation and growth, followed by crack propagation through the matrix, avoiding any of the cenospheres, leading to composite fracture of the matrix.  相似文献   
46.
The development and progression of cancer is associated with disruption of biological networks. Historically studies have identified sets of signature genes involved in events ultimately leading to the development of cancer. Identification of such sets does not indicate which biologic processes are oncogenic drivers and makes it difficult to identify key networks to target for interventions. Using a comprehensive, integrated computational approach, the authors identify the sonic hedgehog (SHH) pathway as the gene network that most significantly distinguishes tumour and tumour‐adjacent samples in human hepatocellular carcinoma (HCC). The analysis reveals that the SHH pathway is commonly activated in the tumour samples and its activity most significantly differentiates tumour from the non‐tumour samples. The authors experimentally validate these in silico findings in the same biologic material using Western blot analysis. This analysis reveals that the expression levels of SHH, phosphorylated cyclin B1, and CDK7 levels are much higher in most tumour tissues as compared to normal tissue. It is also shown that siRNA‐mediated silencing of SHH gene expression resulted in a significant reduction of cell proliferation in a liver cancer cell line, SNU449 indicating that SHH plays a major role in promoting cell proliferation in liver cancer. The SHH pathway is a key network underpinning HCC aetiology which may guide the development of interventions for this most common form of human liver cancer.Inspec keywords: bioinformatics, cancer, cellular biophysics, genetics, liver, molecular biophysics, RNA, systems analysis, tumoursOther keywords: biomedical informatics, human liver cancer, network underpinning HCC aetiology, liver cancer cell line, cell proliferation, SHH gene expression, siRNA‐mediated silencing, CDK7 levels, phosphorylated cyclin B1, Western blot analysis, in silico findings, SHH pathway, human hepatocellular carcinoma, tumour‐adjacent samples, gene network, integrated computational approach, oncogenic drivers, biologic processes, cancer development, biological networks, cancer progression, oncogenic target, primary biomarker, sonic hedgehog pathway, pathway interactions, systems analysis  相似文献   
47.
Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication.  相似文献   
48.
Studies on the extraction and separation of vanadium(V) from mixed hydrochloric acid/ammonium thiocyanate solution with CYANEX 921 and CYANEX 925 in kerosene were carried out. The effects of various factors affecting the extraction process as well as temperature were investigated. Addition of thiocyanate to the chloride solution was found to enhance markedly the extraction of vanadium. HCl solution efficiently stripped V(V). The number of stages required for extraction and stripping of vanadium ions was determined from the McCabe–Thiele diagram. Based on the obtained results, the separation of V(V) from spent catalyst leach indicates the efficiency of the proposed process.  相似文献   
49.
The time course of the extraction of α-acids by liquid carbon dioxide was investigated and it has been established that there are two zones with greatly differing rates of extraction. The rate in the first zone is governed by ‘solubility’ effects, while in the second zone the rate is limited by ‘diffusional’ effects. Consequently the rate of extraction in the first zone depends upon the flow rate of liquid carbon dioxide while that in the second zone depends upon the time of extraction. The effects on extraction performance of the depth of the bed of hops and the extent of milling were also explored.  相似文献   
50.
In this contribution, combined triboelectric and piezoelectric generators (TPEG) with a sandwich structure of aluminum‐polydimethylsiloxane/polyvinylidene fluoride composite‐carbon (Al‐PPCF‐Carbon) are fabricated for the purpose of mechanical energy harvesting. Improved by the surface modification of PPCF with zinc oxide (ZnO) nanorods through a hydrothermal method, the TPEG generates an open‐circuit voltage (Voc) of ≈40 V, a short‐circuit current (Isc) of 0.28 μA with maximum power density of ≈70 mWm?2, and maximum conversion efficiency of 34.56%. Subsequently, in order to understand the transduction mechanism of the triboelectric and piezoelectric effects, analyses focusing on the potential composition ratio in the final output and the impact of ZnO interfacial nanostructure are carried out. The observed potential ratio between triboelectric and piezoelectric effects is 12.75:1 and the highest potential improvement by ZnO nanorods of 21.8 V is achieved by the TPEG fabricated with spacer. Finally, the relationships between the voltage, power density, conversion efficiency, and the external load resistances are also discussed. Overall, the fabricated TPEG is proved to be a simple and effective nanogenerator in mechanical energy conversion with enhanced output potential and conversion efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号