首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   71篇
  国内免费   4篇
电工技术   16篇
综合类   1篇
化学工业   279篇
金属工艺   9篇
机械仪表   6篇
建筑科学   61篇
能源动力   33篇
轻工业   85篇
水利工程   6篇
无线电   102篇
一般工业技术   212篇
冶金工业   17篇
原子能技术   5篇
自动化技术   266篇
  2024年   3篇
  2023年   18篇
  2022年   77篇
  2021年   97篇
  2020年   52篇
  2019年   44篇
  2018年   39篇
  2017年   43篇
  2016年   54篇
  2015年   45篇
  2014年   59篇
  2013年   88篇
  2012年   67篇
  2011年   88篇
  2010年   48篇
  2009年   55篇
  2008年   50篇
  2007年   36篇
  2006年   27篇
  2005年   30篇
  2004年   15篇
  2003年   19篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1990年   1篇
  1973年   1篇
排序方式: 共有1098条查询结果,搜索用时 593 毫秒
201.
This paper describes an experimental setup for the investigation of two-phase heat transfer inside microchannels and reports local heat transfer coefficients measured during flow boiling of HFC-245fa in a 0.96-mm-diameter single circular channel. The test runs have been performed during vaporization at around 1.85 bar, corresponding to 31°C saturation temperature. As a peculiar characteristic of the present technique, the heat transfer coefficient is not measured by imposing the heat flux; instead, the boiling process is governed by controlling the inlet temperature of the heating secondary fluid. In the data, mass velocity ranges between 200 and 400 kg m?2 s?1, with heat flux varying from 5 to 85 kW m?2 and vapor quality from 0.05 up to 0.8. Since these data are not measured at uniform heat flux conditions, a proper analysis is performed to enlighten the influence of the different parameters and to compare the present data to those obtained when the heat flux is imposed. Besides, the test runs have been carried out in a double mode: by increasing the water-to-refrigerant temperature difference and by decreasing it. Finally, the experimental data are compared to models available in the literature for predicting the heat transfer coefficients inside microchannels.  相似文献   
202.
Wirz R  Ferri D  Baiker A 《Analytical chemistry》2008,80(10):3572-3583
A technique is presented which allows studying the enantioselective interactions occurring at the solid-liquid interface of a chiral stationary phase (CSP) and a racemate relevant to high performance liquid chromatography (HPLC). A conventional chiral column (Chiralpak AS) was mounted on an attenuated total reflection-infrared (ATR-IR) cell mimicking an HPLC setup equipped with an ATR-IR detector. Racemic pantolactone (PL) was used as the selectand. This setup in combination with modulation excitation spectroscopy (MES) allows for the identification of inter- and intramolecular hydrogen bonds being crucial for enantioseparation under HPLC operation conditions. The method is based on a two step strategy. In a first step, the enantiomers are separated by the chiral column similar to a standard HPLC experiment and upon adsorption on the identical CSP deposited on the internal reflection element (IRE), they are detected by ATR-IR spectroscopy. This experiment provides a retention time for each enantiomer. From the difference in retention, a suitable frequency is calculated which is used in a second experiment where the racemate concentration is varied alternately (modulation) in a way that the pulses of ( R)-PL and ( S)-PL exhibit a phase lag of 90 degrees after elution through the column. This procedure allows one to gain separate information of the enantioselective selectand-CSP interaction after performing a demodulation similar to a phase sensitive detection (PSD). A further benefit of this method is the strong enhancement of the signal-to-noise ratio. The effectiveness of the method is demonstrated by investigating the observed faster decrease in retention time of the later-eluted ( R)-PL, as compared to ( S)-PL, when separating at higher temperatures (from 12 to 36 degrees C). The origin is attributed to a weakening of a specific hydrogen bond between the C=O of ( R)-PL and the N-H of the CSP.  相似文献   
203.
Dissolved organic matter represents the main reservoir of organic carbon in most aquatic ecosystems. In the present study, we determined the optical changes and the quantum yields of transient species formation for chromophoric dissolved organic matter (CDOM) samples undergoing photodegradation. The results show that the triplet states 3CDOM are potentially key players in CDOM photodegradation and that such transformations are strongly influenced by small differences in CDOM sources and sinks. In contrast, OH radicals are very unlikely to play a key role in phototransformation. These results represent an important first step in combining optical and transient species analyses to understand photodegradation processes of dissolved organic matter.  相似文献   
204.
An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (Mr) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a Mr of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50 °C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach.  相似文献   
205.
The oxidation of nitrite and nitrous acid to *NO2 upon irradiation of dissolved Fe(III), ferric (hydr)oxides, and nitrate has previously been shown to enhance phenol nitration. This allowed the proposal of a new role for nitrite and nitrous acid in natural waters and atmospheric aerosols. This paper deals with the interaction between hydrogen peroxide, a key environmental factor in atmospheric oxidative chemistry, and nitrite/nitrous acid. The reaction between nitrous acid and hydrogen peroxide yields peroxynitrous acid, a powerful nitrating agent and an important intermediate in atmospheric chemistry. The kinetics of this reaction is compatible with a rate-determining step involving either H3O2+ and HNO2 or H2O2 and protonated nitrous acid. In the former case the rate constant between the two species would be 179.6 +/- 1.4 M(-1) s(-1), in the latter case it would be as high as (1.68 +/- 0.01) x 10(10) M(-1) s(-1) (diffusion-controlled reaction). Due to the more reasonable value of the rate constant, the reaction between H3O2+ and HNO2 seems more likely. In the presence of HNO2 + H2O2 the nitration of phenol is strongly enhanced when compared with HNO2 alone. The nitration rate of phenol in the presence of peroxynitrous acid decreases as pH increases, thus HOONO is a potential source of atmospheric nitroaromatic compounds in acidic water droplets. The mixture Fe(II) + H2O2 (Fenton reagent) can oxidize nitrite and nitrous acid to nitrogen dioxide, which results in phenol nitration. The nitration in the presence of Fe(II) + H2O2 + NO2-/HNO2 occurs more rapidly than the one with H2O2 + NO2-/HNO2 at pH 5, where little HNO2 is available to directly react with hydrogen peroxide. Both systems, however, are more effective than NO2-/HNO2 alone in producing nitrophenols from phenol. Another process leading to the oxidation of nitrite to nitrogen dioxide is the photo-Fenton one. It can be relevant at pH > or = 6, as nitrite does not react with H2O2 at room temperature. Under such conditions the source of Fe(II) is the photolysis of ferric (hydr)oxides (heterogeneous photo-Fenton reaction). In the presence of nitrite this reaction induces very effective nitrophenol formation from phenol.  相似文献   
206.
This study was focused on chemical characterisation of liverwort Scapania nemorea extracts and their antimicrobial activity against pathogenic and food-spoiling yeasts and bacteria. The chemical composition of three different extracts of the liverwort S. nemorea was determined by solid phase microextraction gas chromatography-mass spectrometry (SPME GC–MS). The dominant compounds in extracts were sesquiterpenes β-bazzanene (11%, 17.9% and 14.6%), isobazzanene (10.2%, 15.8% and 11.7%) and aromadendrene (8.8%, 12.9% and 10.6%) in the methanol, ethanol and ethyl acetate extracts, respectively. Antimicrobial potential of S. nemorea extracts against food spoiling yeasts and bacteria was determined in vitro by microdilution method. The Minimum Inhibitory Concentration (MIC) varied from 0.5 to 3 mg/mL for bacteria, and from 0.2 to 1 mg/mL for yeasts. Moreover, the combined effects of dry methanol extract of S. nemorea and heat processing on the survival and growth of a spoilage yeast in an apple/orange-based beverage, have been assessed through a Central Composite Design. Changes in color and flavor of the beverages were considered acceptable also after one week of storage at 25 °C. The results provide evidence of antimicrobial potential of S. nemorea extracts and suggest its potential as natural antimicrobial agent for food preservation.  相似文献   
207.
He Y  Donadio D  Galli G 《Nano letters》2011,11(9):3608-3611
Using molecular dynamics simulations, we show that the thermal conductivity (κ) of Si(0.5)Ge(0.5) can be reduced by more than one order of magnitude by etching nanometer-sized holes in the material, and it becomes almost constant as a function of temperature between 300 and 1100 K for samples with 1 nm wide pores. In nanoporous SiGe, thermal conduction is largely determined by mass disorder and boundary scattering, and thus the dependence of κ on pore distance and on structural, atomistic disorder is much weaker than in the case of nanoporous Si. This indicates that one may minimize κ of the alloy with less stringent morphological constraints than for pure Si.  相似文献   
208.
We discuss the shape resonance in the superconducting gaps of a two-band superconductor by tuning the chemical potential at a Lifshitz transition for Fermi surface neck collapsing and for spot appearing. The high temperature superconducting scenario for complex matter shows the coexistence of a first BCS condensate made of Cooper pairs in the first band and a second boson-like condensate made of bosons like bipolarons, in the second band where the chemical potential is tuned near a Lifshitz transition. The interband coupling controls the shape resonance in the pair exchange between the two condensates. We discuss the particular BCS–Bose crossover that occurs at the shape resonance tuning the Lifshitz parameter (the energy difference between the chemical potential and the Lifshitz topological transition) like tuning the external magnetic field for the Feshbach resonances in ultracold gases. This superconducting phase provides a particular case of topological superconductivity with multiple condensates of different winding numbers.  相似文献   
209.
Advanced nuclear water reactors rely on containment behaviour in realization of some of their passive safety functions. Steam condensation on containment walls, where non-condensable gas effects are significant, is an important feature of the new passive containment concepts, like the AP600/1000 ones.In this work the international reactor innovative and secure (IRIS) was taken as reference, and the relevant condensation phenomena involved within its containment were investigated with different computational tools. In particular, IRIS containment response to a small break LOCA (SBLOCA) was calculated with GOTHIC and RELAP5 codes. A simplified model of IRIS containment drywell was implemented with RELAP5 according to a sliced approach, based on the two-pipe-with-junction concept, while it was addressed with GOTHIC using several modelling options, regarding both heat transfer correlations and volume and thermal structure nodalization. The influence on containment behaviour prediction was investigated in terms of drywell temperature and pressure response, heat transfer coefficient (HTC) and steam volume fraction distribution, and internal recirculating mass flow rate. The objective of the paper is to preliminarily compare the capability of the two codes in modelling of the same postulated accident, thus to check the results obtained with RELAP5, when applied in a situation not covered by its validation matrix (comprising SBLOCA and to some extent LBLOCA transients, but not explicitly the modelling of large dry containment volumes).The option to include or not droplets in fluid mass flow discharged to the containment was the most influencing parameter for GOTHIC simulations. Despite some drawbacks, due, e.g. to a marked overestimation of internal natural recirculation, RELAP5 confirmed its capability to satisfactorily model the basic processes in IRIS containment following SBLOCA.  相似文献   
210.
Saliva is easy to access, non-invasive and a useful source of information useful for the diagnosis of serval inflammatory and immune-mediated diseases. Following the advent of genomic technologies and -omic research, studies based on saliva testing have rapidly increased and human salivary proteome has been partially characterized. As a proteomic protocol to analyze the whole saliva proteome is not currently available, the most common aim of the proteomic analysis is to discriminate between physiological and pathological conditions. The salivary proteome has been initially investigated in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease, and Sjögren’s syndrome. Otherwise, salivary proteomics studies in the dermatological field are still in the initial phase, thus the aim of this review is to collect the best research evidence on the role of saliva proteomics analysis in immune-mediated skin diseases to understand the direction of research in this field. The results of PRISMA analysis reported herein suggest that human saliva analysis could provide significant data for the diagnosis and prognosis of several immune-mediated and inflammatory skin diseases in the next future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号