首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
化学工业   8篇
机械仪表   5篇
能源动力   1篇
石油天然气   2篇
一般工业技术   4篇
冶金工业   1篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2005年   1篇
  1995年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
The effective hydrocarbon field development requires a well-developed waterflooding strategy with surveillance plan for continuous efficiency monitoring. The modified capacitance resistance model (CRM) is proposed to monitor the efficiency of oil field waterflood. The model outcomes give and understanding of flooding response. Forties field data was used to test and present the waterflood performance based on proposed modified CRM model.  相似文献   
12.
Stach  Sebastian  Ţălu  Ştefan  Dallaev  Rashid  Arman  Ali  Sobola  Dinara  Salerno  Marco 《SILICON》2020,12(11):2563-2570
Silicon - The morphological stability of silicon single crystal wafers was investigated, after performing cleaning surface treatments based on moderate temperature annealing and plasma sputtering....  相似文献   
13.
Fractal concepts are used to explore how different energies (10, 20 and 50 keV) and fluence of 5 × 1017 N+ cm?2 affect the morphology of nickel thin film. The nickel thin film with thickness of 100 nm is prepared by electron beam evaporation technique at room temperature on stainless steel (AISI 316) substrates. The nanoscale three‐dimensional (3‐D) surface micro‐morphologies are investigated by atomic force microscopy (AFM). Interface width is used to describe the surface height fluctuations. The autocorrelation function with height‐height correlation function give the quantitative data about the morphology of surface. The value of roughness exponent and fractal dimension is computed by height‐height correlation function. Fractal measure is an important analysis which provides fundamental insights into the texture characteristics and a direct way of testing their functional role.  相似文献   
14.
Precipitation of deposited wax on pipe walls is one of the complex flow assurance problems that cause a decrease and complete blockage of oil production rates by reducing the cross-sectional area of the flow in the pipelines. In addition, surface facilities require higher energy consumption and equipment failure due to paraffin plugs. The purpose of the research is to use the assessment of melting properties in the model of multisolid (MS) forecasting of paraffin in Kazakhstani oil. This article presents the calculation and modification of the fusion properties for a certain Kazakhstani oil for the subsequent calculation of the MS model for predicting wax deposition; numerous approaches have been developed to predict and prevent the flow assurance problems in both science and industry. Most of them are based on predicting the temperature of crystallization of paraffin considering the temperature dependence of the solubility parameters of individual components in the liquid and solid phases, as well as the molar volumes of individual components. Wax deposition can occur anywhere from a reservoir to surface facilities and pipelines. One of the main limitations of the existing models is their applicability to a wide range of crude oil types, while this modified paraffin predicting model will target Kazakhstani crude oil.  相似文献   
15.
Modern day pencil lead is a material of many possibilities. Manufacture process is fast, easy, and well established, yet the full potential of its use still remains to be uncovered. Graphite content ratio to binding clays determines basic properties of the lead like its toughness and color, but more interesting qualities like conductivity and reactivity as well. Properly employed electrochemical etching with a bubble membrane creates sharp and smooth graphite tips, which can be, given enough graphite content, used as probes in several measurement techniques. Observing and adjusting the tip creation process and the results for use in further research are the objectives of this paper.  相似文献   
16.
A comprehensive study on energy harvesting characteristics as well as electro-mechanical properties of lead-free (1−x)(BaZr0.2Ti0.8)O3x(Ba0.7Ca0.3Ti)O3 ceramics were systematically carried out. Raman and Rietveld analyses show a formation of rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary region between 4/6 BZT/BCT and 6/4 BZT/BCT compositional range. Raman modes shift toward lower frequencies with increased Zr/Ca stoichiometric ratio attributed to asymmetric Ti-O phonon vibrations, which caused local disorder, widening of energy band and reduced Curie temperature. The large mechanical quality factor Qm = 556 is related to the hardening effect and significantly high energy conversion efficiency η = 96% was discovered for 3/7 BZT/BCT composition. Largely, the noblest electro-mechanical properties were retrieved for 5/5 BZT/BCT ceramics, in which d33 = 500 pC/N (from quasi-static d33 meter), d33 = 540 pm/V (from field-dependent d33 curves) indicating that the both methods are analogous with a deviation of 8%. The outstanding energy harvesting characteristics such as voltage constant g33 = 27 × 10−3 Vm/N, transduction coefficient d33 × g33 = 13 301 × 10−15 m2/N, figure of merit under off-resonance conditions FOMoff = 12.1 × 10−10 m2/N and fairly large η of 94% were attained again for 5/5 BZT/BCT ceramics. These outstanding characteristics were ascribed to the R-O-T phase boundary region that comprises a low energy barrier, consequently facilitated easy polarization rotation and triggered an increased electro-mechanical conversion. These characteristics outperform other lead-free and even most commercially available lead-based ceramics, and thus suitable for sensors, actuators, resonators, and energy harvesting applications.  相似文献   
17.
The development of biodegradable curative systems containing antibacterial drug are fundamental for the promotion of therapeutic actions, reducing the infections caused by microorganisms and being able to substitute conventional dressings which are not biodegradable polymers in their composition. Meeting those needs, poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/gentamicin (GT) fibers were electrospun using different concentrations of GT. The physical–chemical, morphological, thermal, antibacterial, and biological properties of the PBAT and PBAT/GT fibers were characterized. The presence of GT modified the mean diameter, roughness, and wettability of the prepared fibers. The degree of swelling was altered with the addition of GT. PBAT/GT fibers showed antibacterial activity against Escherichia coli strains reaching an inhibitory activity above 90% in the films with 2%, 5%, and 10% of GT. In addition, the fibers did not present cytotoxicity according to ISO 10993-5 standard. The obtained results reinforce that PBAT can be used as a curative system.  相似文献   
18.
We report a large piezoelectric constant (d33), 720 pC/N and converse piezoelectric constant (d33*), 2215 pm/V for 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 ceramics; the biggest value achieved for lead-free piezoceramics so far. The ceramic powders were calcined between 1050°C-1350°C and sintered at 1480°C. The best properties were obtained at a calcination temperature (CT) of 1350°C. The fitting combination of processing and microstructural parameters for example, initial powder particle size >2 µm, ceramics density ~95%, and grain size ~40 µm led to a formation of orthorhombic-tetragonal-pseudo-cubic (O-T-PC) mixed phase boundary near room temperature, supported by Raman spectra, pointed to the extremely high piezoelectric activity. These conditions significantly increase piezoelectric constants, together with high relative permittivity (εr) >5000 and a low loss tangent (tan δ) of 0.029. In addition, the d33 value stabilizes in the range of 400-500 pC/N for all samples calcined between 1050°C and 1250°C. The results entail that the (Ba,Ca)(Sn,Ti)O3 ceramics are strong contenders to be a substitute for lead-based materials for room temperature applications.  相似文献   
19.
The purpose of this work is to study the dependence of AFM‐data reliability on scanning rate. The three‐dimensional (3D) surface topography of the samples with different micro‐motifs is investigated. The analysis of surface metrics for estimation of artifacts from inappropriate scanning rate is presented. Fractal analysis was done by cube counting method and evaluation of statistical metrics was carrying out on the basis of AFM‐data. Combination of quantitate parameters is also presented in graphs for every measurement. The results indicate that the sensitivity to scanning rate growths with fractal dimension of the sample. This approach allows describing the distortion of the images against scanning rate and could be applied for dependences on the other measurement parameters. The article explains the relevance and comparison of fractal and statistical surface parameters for characterization of data distortion caused by inappropriate choice of scanning rate.  相似文献   
20.
The problem considered herein is the dynamic, subsonic, steady-state propagation of a semi-infinite, generalized plane strain crack in an infinite, transversely isotropic, linear viscoelastic body. The corresponding boundary value problem is considered initially for a general anisotropic, linear viscoelastic body and reduced via transform methods to a matrix Riemann–Hilbert problem. The general problem does not readily yield explicit closed form solutions, so attention is addressed to the special case of a transversely isotropic viscoelastic body whose principal axis of material symmetry is parallel to the crack edge. For this special case, the out-of-plane shear (Mode III), in-plane shear (Mode II) and in-plane opening (Mode I) modes uncouple. Explicit expressions are then constructed for all three Stress Intensity Factors (SIF). The analysis is valid for quite general forms for the relevant viscoelastic relaxation functions subject only to the thermodynamic restriction that work done in closed cycles be non-negative. As a special case, an analytical solution of the Mode I problem for a general isotropic linear viscoelastic material is obtained without the usual assumption of a constant Poissons ratio or exponential decay of the bulk and shear relaxation functions. The Mode I SIF is then calculated for a generalized standard linear solid with unequal mean relaxation times in bulk and shear leading to a non-constant Poissons ratio. Numerical simulations are performed for both point loading on the crack faces and for a uniform traction applied to a compact portion of the crack faces. In both cases, it is observed that the SIF can vanish for crack speeds well below the glassy Rayleigh wave speed. This phenomenon is not seen for Mode I cracks in elastic material or for Mode III cracks in viscoelastic material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号