In the present study a tube-in-tube helically coiled (TTHC) heat exchanger has been numerically modeled for fluid flow and heat transfer characteristics for different fluid flow rates in the inner as well as outer tube. The three-dimensional governing equations for mass, momentum and heat transfer have been solved using a control volume finite difference method (CVFDM). The renormalization group (RNG) k– model is used to model the turbulent flow and heat transfer in the TTHC heat exchanger. The fluid considered in the inner tube is compressed air at higher pressure and cooling water in the outer tube at ambient conditions. The inner tube pressure is varied from 10 to 30 bars. The Reynolds numbers for the inner tube ranged from 20,000 to 70,000. The mass flow rate in the outer tube is varied from 200 to 600 kg/h. The outer tube is fitted with semicircular plates to support the inner tube and also to provide high turbulence in the annulus region. The overall heat transfer coefficients are calculated for both parallel and counter flow configurations. The Nusselt number and friction factor values in the inner and outer tubes are compared with the experimental data reported in the literature. New empirical correlations are developed for hydrodynamic and heat-transfer predictions in the outer tube of the TTHC. 相似文献
The present study deals with the numerical simulation of flow patterns and mixing behaviour in Kenics static mixer over a wide range of Reynolds number. Three different sets of Kenics mixer (aspect ratio = 1.5) comprised of 3, 9 and 25 elements each have been characterized. The Reynolds number was varied in the range of 1 to 25,000 (i.e., from laminar to turbulent flow regime). The numerical approach takes into account the aspects of the fluid flow at higher Reynolds number values including circumferential velocity profiles at different cross-sections within the Kenics mixer, which were neglected in previous studies. It was observed that cross-sectional mixing in the turbulent flow regime takes place up to 30% of each element length at element-to-element transition; beyond that velocity profiles were uniform. The experiments were also carried out to measure the circumferential and axial velocity profiles and pressure drop in three different Kenics Mixers using air as fluid. The pressure drop per unit element (ΔP/η) was found to be independent of the number of Kenics mixing elements used in the system. The total pressure drop across Kenics mixer obtained by CFD simulations were compared with the experimental pressure drop values and correlations available in the literature. The numerical results were found in good agreement with the experimental as well as the results reported in the literature. A new pressure drop correlation in the Kenics static mixer has been developed. 相似文献
Ultrafine La(Ca)CrO3 (LCC) powder was prepared through the glycine–nitrate gel combustion process. It was shown for the first time that the use of relatively inexpensive CrO3 as a starting material for chromium has potential for the bulk preparation of sinter-active LCC powder. As-prepared powder, when calcined at 700°C, resulted in LCC along with a small amount of CaCrO4. The calcined powder was found to be composed of soft agglomerates with a particle size of ≈70–290 nm. The cold pressing and sintering of the calcined powder at 1200°C resulted in the mono-phasic La0.7Ca0.3CrO3 with density ≈98% of its theoretical value. This is the lowest sintering temperature ever reported for La0.7Ca0.3CrO3. The conductivity of the sintered La0.7Ca0.3CrO3 at 1000°C was found to be ≈57 S/cm in air. The sintering and electrical behavior achieved for La0.7Ca0.3CrO3 may find application as an interconnect material for high-temperature solid oxide fuel cells if problems with chemical expansion and poor conductivity in fuel can be overcome. 相似文献
The combined-stage sintering model was used to determine the activation energy, Q , of sintering for selected SiC-based materials. SiC densified with a liquid (1.65 wt% Al) had an activation energy of 842±79 kJ/mol, a value between those for a silicon carbide densified with 1 wt% C and 0.25 wt% B4C ( Q =643±37 kJ/mol) and one densified with 2.5 wt% AlN ( Q =1022±122 kJ/mol), compositions which have no liquid phase below 1850°C. The SiC with Al additive began densification by 1500°C and the densification curve was offset by approximately 100°C compared with the other two materials below 1850°C. The choice and amount of additives not only affect densification and activation energy, but also influence microstructure and fracture mode, allowing engineering of mechanical properties. 相似文献
Simple hydroxide precursors were used for the first time for the synthesis of a typical Aurivillius compound (SrBi2Nb2O9 (SBN)) at a low temperature. This method is very advantageous because it circumvents the use of SrCO3 in the case of conventional ceramics as well in the coprecipitation methods, thereby lowering the formation of the product phase. Commercially purchased strontium hydroxide is mixed thoroughly with freshly precipitated bismuth and niobium hydroxides in a stoichiometric ratio and heated at different temperatures ranging from 100°C to 750°C for 12 h. The sequence of the reaction and evolution of the product phase was monitored by X-ray diffraction (XRD) studies by recording the XRD for samples calcined at different temperatures. The incipient SBN phase begins to form at temperatures as low as 400°C, and phase formation was complete only at 650°C as revealed by the XRD observations. The differential thermal/thermogravimetric analyses) also corroborate this result. The morphology and average particle size of these powders were investigated by transmission electron microscopy studies. 相似文献
The Ni–Nb2O5 composites were prepared by pulse electrodeposition method. Operating variables were optimized for getting a good deposit. The quantity of Nb2O5 particles in the coating was analyzed by an energy-dispersive X-ray diffraction spectrometer. X-ray diffraction and scanning electron microscopy were used to analyze the structure and surface morphology of the coatings. Texture coefficient and hardness of the deposits were determined and discussed. The corrosion behavior of the coatings was analyzed by traditional weight loss and electrochemical methods. Comparisons of the corrosion behaviour of coatings obtained by direct current (DC) and pulse current (PC) were investigated. 相似文献
The electrochemical discharge machining is a highly stochastic process involving a number of complex parameters. Controlling of these process parameters simultaneously to fetch the best possible performance is a difficult task. Determining an optimal parametric combination has become complex owing to interdependency of the parameters. In this work, the authors have made an attempt to establish the optimal combination of control parameters for machining of micro-channels on quartz glass. Taguchi’s standard orthogonal array (L9) with Grey relational analysis (GRA) approach was used to establish the optimal parametric conditions for reducing the Width overcut (WOC) of micro-channels and increasing the Material removal rate (MRR). In order to optimize MRR and WOC together, the optimal combination of the selected control variables was obtained using the GRA. The experimental results showed the effectiveness of the adapted method to indicate the performance of the electrochemical discharge machining process.
Journal of Mechanical Science and Technology - The load bearing capacity of weld is highly influenced by the mode of metal transfer which in turn is dependent on welding current and arc voltage.... 相似文献
Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), weight loss measurements and atomic force microscopy techniques were used to investigate the inhibitory effect of diethylcarbamazine (DECM) on corrosion of mild steel in HCl solution. The inhibitor showed >90% inhibition efficiency at 5.01 × 10−4 M. Results obtained revealed that inhibition occurs through adsorption of inhibitor molecules on metal surface without modifying the mechanism of corrosion process. Potentiodynamic polarization studies suggested that it is a mixed type inhibitor, predominantly controls cathodic reaction. Activation parameters (Ea, ΔH and ΔS) and thermodynamic parameters (, and ) were calculated to investigate mechanism of inhibition. 相似文献