首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1406篇
  免费   42篇
  国内免费   13篇
电工技术   25篇
综合类   12篇
化学工业   273篇
金属工艺   22篇
机械仪表   43篇
建筑科学   55篇
矿业工程   25篇
能源动力   45篇
轻工业   72篇
水利工程   26篇
石油天然气   17篇
无线电   107篇
一般工业技术   229篇
冶金工业   220篇
原子能技术   27篇
自动化技术   263篇
  2022年   10篇
  2021年   9篇
  2020年   9篇
  2019年   21篇
  2018年   25篇
  2017年   28篇
  2016年   25篇
  2015年   22篇
  2014年   27篇
  2013年   113篇
  2012年   58篇
  2011年   84篇
  2010年   52篇
  2009年   55篇
  2008年   73篇
  2007年   64篇
  2006年   40篇
  2005年   50篇
  2004年   51篇
  2003年   32篇
  2002年   35篇
  2001年   28篇
  2000年   24篇
  1999年   25篇
  1998年   28篇
  1997年   34篇
  1996年   36篇
  1995年   37篇
  1994年   31篇
  1993年   17篇
  1992年   23篇
  1991年   17篇
  1990年   16篇
  1989年   13篇
  1988年   10篇
  1987年   16篇
  1986年   21篇
  1985年   16篇
  1984年   14篇
  1983年   11篇
  1982年   13篇
  1980年   11篇
  1979年   11篇
  1978年   9篇
  1977年   11篇
  1976年   10篇
  1975年   8篇
  1974年   8篇
  1973年   12篇
  1972年   9篇
排序方式: 共有1461条查询结果,搜索用时 15 毫秒
51.
Light scattering by kaolinite dust samples at 532 nm is studied using a newly developed laboratory apparatus. During the experiments, dust samples are suspended in water, aerosolized by a nebulizer, and then injected into the scattering zone, with or without going through a diffusion drier, to generate either dried dust particles or water droplets with dust inclusions. The light source is a dual wavelength (532 and 1064 nm) diode-pumped solid state laser. Light scattered by an ensemble of particles is collected by a charge-coupled device (CCD) camera, which is mounted on the rotating arm of a stepper motor. The stepper motor rotates the CCD to cover the scattering angle range from 3° to 177°. Polarized scattering light is measured for the horizontally and vertically polarized incident light. The apparatus is calibrated, using pure water droplets as the scattering media. The response function with respect to the scattering angle is obtained by comparing the measurements with Lorenz–Mie calculations and then used in the later data analysis. Measurements show that the backward scattering features of the water droplets are smoothened due to their dust inclusions. Numerical simulations and measurements are extensively compared and discussed. It is found that the Lorenz–Mie theory is inadequate to reproduce the scattering phase functions of either dust particles or water droplets with dust inclusions. A nonspherical aggregate model is applied to simulate the scattering phase functions. The simulation is able to reproduce the overall scattering features; however, substantial discrepancies still exist due to uncertainties in particle shape and refractive index.

Copyright © 2018 American Association for Aerosol Research  相似文献   

52.
Binary blends of cellulose acetate propionate (CAP) and poly(butylene terephthalate) (PBT) in the composition range of 5–15 wt % for CAP were prepared in the form of films and fibers by compression molding and spinning, respectively. The presence of two invariant glass‐transition temperatures corresponding to the CAP and PBT components and viscosities lower than those of the neat PBT of the CAP–PBT blends implied that the CAP–PBT blends were immiscible. Moreover, the crystallinity of the PBT component was higher in the spun fibers than in the films; this was possibly due to the different cooling methods or the chain orientation in the spinning process. In the meantime, the CAP component could not undergo crystallization because of its rigid structure and alkyl substituents. For the CAP–PBT films, the amorphous CAP was present as dispersed particles in the PBT matrix; but it became rods in the spun fibers. In addition, the presence of the amorphous CAP resulted in a decrease in the tensile strength and an increase in the elongation at break for the CAP–PBT fibers. The CAP–PBT films and fibers could be applied in a wide range of applications requiring renewable properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45013.  相似文献   
53.
Biodegradable polymer blends of high-molecular-weight poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) are not miscible in general. Yet, by decreasing the molecular weight of PHB, the low-molecular-weight PHB could have improved miscibility with the PLA. In this study, a melt-induced degradation process of PLA/PHB blends was therefore implemented, termed the in-situ self-compatibilization approach, to produce low-molecular-weight PHB during melt blending process. The solution blends of PLA and oligomer PHB (PLA/OPHB) were also prepared as a basis to understand the role of low-molecular-weight PHB to improve its miscibility with PLA in PLA/PHB blends. Only one single glass transition temperature (Tg) was found for the resulting PLA/PHB blends at compositions of 95/05 to 80/20, proving that the miscibility was greatly improved by decreasing molecular weight of PHB. Because the degraded PHB had a relatively lower Tg, it thus provided plasticization effect to the PLA and resulted in the decreased crystallization temperature. Moreover, with increasing PHB content to 20% in the blend, the elongation at break increased significantly from 7.2% to 227%, more than 30-fold. The extensive shear yielding and necking behavior were observed during tensile testing for the blend of 80/20. The localized plasticization within PLA/PHB matrix with the reduction of local yield stress and the well-dispersed PHB crystallites were the major contributing factors to trigger shear yielding phenomenon. Moreover, initial modulus decreased only 20%, from 1.68 to 1.35 GPa. A common problem of severely reduced stiffness from the added plasticizer encountered in the plasticized PLA blends was therefore not perceived here.  相似文献   
54.
A silicon carbide disk was sintered from 2090° to 2190°C in 25°C steps. After each sintering step, the disk was examined using a precision acoustic scanning system to determine acoustic attenuation and velocity. The bulk density was found to vary non-monotonically with sintering temperature. The density varied as much as 10% from its value at 2090°C during the sintering process. Local density fluctuations occurred in an organized and history-dependent way. These local density fluctuations varied up to ±7% of the bulk density and were made visible by acoustic attenuation and velocity mapping.  相似文献   
55.
56.
Simulation of DME synthesis from coal syngas by kinetics model   总被引:1,自引:0,他引:1  
DME (Dimethyl Ether) has emerged as a clean alternative fuel for diesel. There are largely two methods for DME synthesis. A direct method of DME synthesis has been recently developed that has a more compact process than the indirect method. However, the direct method of DME synthesis has not yet been optimized at the face of its performance: yield and production rate of DME. In this study it is developed a simulation model through a kinetics model of the ASPEN plus simulator, performed to detect operating characteristics of DME direct synthesis. An overall DME synthesis process is referenced by experimental data of 3 ton/day (TPD) coal gasification pilot plant located at IAE in Korea. Supplying condition of DME synthesis model is equivalently set to 80 N/m3 of syngas which is derived from a coal gasification plant. In the simulation it is assumed that the overall DME synthesis process proceeds with steadystate, vapor-solid reaction with DME catalyst. The physical properties of reactants are governed by Soave-Redlich-Kwong (SRK) EOS in this model. A reaction model of DME synthesis is considered that is applied with the LHHW (Langmuir-Hinshelwood Hougen Watson) equation as an adsorption-desorption model on the surface of the DME catalyst. After adjusting the kinetics of the DME synthesis reaction among reactants with experimental data, the kinetics of the governing reactions inner DME reactor are modified and coupled with the entire DME synthesis reaction. For validating simulation results of the DME synthesis model, the obtained simulation results are compared with experimental results: conversion ratio, DME yield and DME production rate. Then, a sensitivity analysis is performed by effects of operating variables such as pressure, temperature of the reactor, void fraction of catalyst and H2/CO ratio of supplied syngas with modified model. According to simulation results, optimum operating conditions of DME reactor are obtained in the range of 265–275 °C and 60 kg/cm2. And DME production rate has a maximum value in the range of 1–1.5 of H2/CO ratio in the syngas composition.  相似文献   
57.
In this study, poly(methyl methacrylate) (PMMA) latex was synthesized in an emulsifier‐free emulsion polymerization at 60°C using a Cu2+/HSO redox initiator system with different concentrations of Cu2+. The experimental results showed that the monomer conversion reached above 90% for all systems. Zeta potential was all negative due to the bonded bisulfite ion and the magnitude was greater than 30 mV, providing the stability of PMMA emulsion. The morphology of the latex observed by scanning electron microscope revealed a uniform particle size, and the average particle size increased from 181.9 to 234.2 nm as the Cu2+ ion concentration increased from 2.0 to 6.0 mM in 1M of MMA solution. Thermal degradation behavior of synthesized PMMA was studied by thermogravimetric analysis, in which a two‐stage degradation behavior was observed. These two stages were found to be caused by the degradation of unsaturated end group (PMMA? CR?CH2) and saturated end group (PMMA? H), respectively. In addition, the higher the concentration of Cu2+ ion, the greater the proportion of PMMA? CR?CH2 in the final product, and in turn rendering more weight loss in the first‐stage degradation. The copper ion not only played a role in the redox initiation, but also acted as a chain transfer agent to terminate growing polymer chains, thus producing PMMA? CR?CH2. The apparent activation energies of the first stage (Ea1) and second stage (Ea2) were calculated by Ozawa's and Boswell's method. The results showed that Ea1, representing the degradation of PMMA‐CR?CH2, was lower than Ea2 for the degradation of PMMA‐H. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
58.
Hybrid processes in manufacturing   总被引:2,自引:0,他引:2  
  相似文献   
59.
60.
A new type of negative photoresist, which incorporated nanosized silica into a photosensitive acrylic resin, was developed. First, free‐radical polymerization was employed to synthesize the acrylic resin, poly[methyl methacrylate/methacrylic acid/3‐(trimethoxysilyl) propyl methacrylate], and then a silica precursor, prepared by hydrolysis and condensation of tetraethoxysilane in a sol–gel process, was introduced into the as‐formed resin solution. After the addition of photosensitive monomers and photoinitiators, a negative‐type organic–inorganic photoresist was produced. The morphology of the UV‐cured photoresist, as observed by field emission scanning electron microscopy, indicated that the size of the silica domain in the material could be reduced from 300 to about 50 nm by appropriate dosage of 3‐(trimethoxysilyl) propyl methacrylate. Thermogravimetric analysis, dynamic mechanical analysis, differential scanning calorimetry, and thermal mechanical analysis were used to evaluate the thermal and dimensional stabilities of the cured photoresists. It was found that the thermal decomposition temperature and glass‐transition temperature increased, whereas the thermal expansion coefficients before and after the glass transition decreased, with increasing silica content. The incorporation of 3‐(trimethoxysilyl) propyl methacrylate also enhanced the thermal and dimensional stabilities; however, the level of enhancement was moderate for the thermal decomposition temperature and thermal expansion coefficient and low for the glass‐transition temperature. In addition, a photoresist coated on a copper substrate demonstrated high hardness (5H) and strong adhesion (100%) with a resolution of 30 μm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号