全文获取类型
收费全文 | 91232篇 |
免费 | 5453篇 |
国内免费 | 2146篇 |
专业分类
电工技术 | 3630篇 |
技术理论 | 2篇 |
综合类 | 3044篇 |
化学工业 | 15577篇 |
金属工艺 | 4263篇 |
机械仪表 | 5502篇 |
建筑科学 | 4388篇 |
矿业工程 | 1485篇 |
能源动力 | 3088篇 |
轻工业 | 6413篇 |
水利工程 | 1135篇 |
石油天然气 | 2455篇 |
武器工业 | 445篇 |
无线电 | 13440篇 |
一般工业技术 | 14590篇 |
冶金工业 | 6769篇 |
原子能技术 | 1148篇 |
自动化技术 | 11457篇 |
出版年
2024年 | 1189篇 |
2023年 | 1423篇 |
2022年 | 2106篇 |
2021年 | 3146篇 |
2020年 | 2530篇 |
2019年 | 2375篇 |
2018年 | 2431篇 |
2017年 | 2537篇 |
2016年 | 2825篇 |
2015年 | 2897篇 |
2014年 | 3915篇 |
2013年 | 5419篇 |
2012年 | 5602篇 |
2011年 | 6294篇 |
2010年 | 5104篇 |
2009年 | 5228篇 |
2008年 | 4883篇 |
2007年 | 4390篇 |
2006年 | 4062篇 |
2005年 | 3449篇 |
2004年 | 2881篇 |
2003年 | 2634篇 |
2002年 | 2685篇 |
2001年 | 2179篇 |
2000年 | 1911篇 |
1999年 | 1884篇 |
1998年 | 2408篇 |
1997年 | 1669篇 |
1996年 | 1405篇 |
1995年 | 1204篇 |
1994年 | 865篇 |
1993年 | 793篇 |
1992年 | 599篇 |
1991年 | 529篇 |
1990年 | 456篇 |
1989年 | 374篇 |
1988年 | 327篇 |
1987年 | 256篇 |
1986年 | 263篇 |
1985年 | 211篇 |
1984年 | 187篇 |
1983年 | 136篇 |
1982年 | 122篇 |
1981年 | 108篇 |
1980年 | 107篇 |
1979年 | 79篇 |
1978年 | 78篇 |
1977年 | 107篇 |
1976年 | 132篇 |
1975年 | 69篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Yue Wang Yangyu Li Wei Guo Xiao Yang Jiameng Qu Mang Gao Shuting Chen Jiangru Dong Qing Li Tiejie Wang 《International journal of molecular sciences》2022,23(22)
To clarify the differences in the clinical application scope of Chrysanthemum morifolium flower (CMF) and Chrysanthemum indicum flower (CIF), two herbs of similar origin, an integrated strategy of network pharmacology, molecular pharmacology, and metabolomics was employed, with a view to investigating the commonalities and dissimilarities in chemical components, efficacy and mechanisms of action. Initial HPLC-Q-TOF-MS analysis revealed that CMF and CIF had different flavonoid constituents. The biological processes underlying the therapeutic effects of CMF and CIF on liver-fire hyperactivity syndrome of hypertension (LFHSH) were predicted to be related to inflammatory response, fatty acid production, and other pathways based on network pharmacology analysis. ELISA, molecular docking, Western blot, and metabolomics techniques showed similar effects of CMF and CIF in lowering blood pressure, resistance to tissue, organ and functional damage, and dyslipidemia. However, distinct effects were found in the regulation of inflammatory response, PI3K-Akt and NF-κB signaling pathways, lipid anabolism, renin-angiotensin system, and metabolic abnormalities. The comparable efficacies of CMF and CIF, despite having distinct mechanisms of action, may be attributed to the integration and counteraction of their different regulating capabilities on the above anti-LFHSH mechanisms. This study offers a vital platform for assessment of differential and precise applications of herbs of close origin with similar but slightly different medicinal properties, and provides a research strategy for bridging Chinese medicine and modern precision medicine. 相似文献
72.
73.
David S. Lee Angela Schrader Emily Bell Mark E. Warchol Lavinia Sheets 《International journal of molecular sciences》2022,23(22)
Cisplatin is an effective anticancer agent, but also causes permanent hearing loss by damaging hair cells—the sensory receptors essential for hearing. There is an urgent clinical need to protect cochlear hair cells in patients undergoing cisplatin chemotherapy. The zebrafish lateral line organ contains hair cells and has been frequently used in studies to screen for otoprotective compounds. However, these studies have employed a wide range of cisplatin dosages and exposure times. We therefore performed a comprehensive evaluation of cisplatin ototoxicity in the zebrafish lateral line with the goal of producing a standardized, clinically relevant protocol for future studies. To define the dose- and time-response patterns of cisplatin-induced hair-cell death, we treated 6-day-old larvae for 2 h in 50 µM–1 mM cisplatin and allowed them to recover. We observed delayed hair cell death, which peaked at 4–8 h post-exposure. Cisplatin also activated a robust inflammatory response, as determined by macrophage recruitment and phagocytosis of hair cells. However, selective depletion of macrophages did not affect hair cell loss. We also examined the effect of cisplatin treatment on fish behavior and found that cisplatin-induced lateral line injury measurably impaired rheotaxis. Finally, we examined the function of remaining hair cells that appeared resistant to cisplatin treatment. We observed significantly reduced uptake of the cationic dye FM1-43 in these cells relative to untreated controls, indicating that surviving hair cells may be functionally impaired. Cumulatively, these results indicate that relatively brief exposures to cisplatin can produce hair cell damage and delayed hair cell death. Our observations provide guidance on standardizing methods for the use of the zebrafish model in studies of cisplatin ototoxicity. 相似文献
74.
Seansoo Hwang HyeonGyeong Lee Yu-Gyeong Jeong Chanhee Choi Inhyeok Hwang SeungHyeon Song Sang Yong Nam Jin Hong Lee Kihyun Kim 《International journal of molecular sciences》2022,23(22)
To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers. 相似文献
75.
Chang-Gun Lee Do-Wan Kim Jeonghyun Kim Laxmi Prasad Uprety Kang-Il Oh Shivani Singh Jisu Yoo Hyun-Seok Jin Tae Hyun Choi Eunkuk Park Seon-Yong Jeong 《International journal of molecular sciences》2022,23(22)
Osteoporosis is a disease caused by impaired bone remodeling that is especially prevalent in elderly and postmenopausal women. Although numerous chemical agents have been developed to prevent osteoporosis, arguments remain regarding their side effects. Here, we demonstrated the effects of loganin, a single bioactive compound isolated from Cornus officinalis, on osteoblast and osteoclast differentiation in vitro and on ovariectomy (OVX)-induced osteoporosis in mice in vivo. Loganin treatment increased the differentiation of mouse preosteoblast cells into osteoblasts and suppressed osteoclast differentiation in primary monocytes by regulating the mRNA expression levels of differentiation markers. Similar results were obtained in an osteoblast–osteoclast co-culture system, which showed that loganin enhanced alkaline phosphatase (ALP) activity and reduced TRAP activity. In in vivo experiments, the oral administration of loganin prevented the OVX-induced loss of bone mineral density (BMD) and microstructure in mice and improved bone parameters. In addition, loganin significantly increased the serum OPG/RANKL ratio and promoted osteogenic activity during bone remodeling. Our findings suggest that loganin could be used as an alternative treatment to protect against osteoporosis. 相似文献
76.
Isoquercitrin (IQC) is a component abundantly present in many plants and is known to have an anti-viral effect against various viruses. In this study, we demonstrate that IQC exhibits strong anti-influenza A virus infection, and its effect is closely related to the suppression of hemagglutinin (HA) and neuraminidase (NA) activities. We used green fluorescent protein-tagged Influenza A/PR/8/34 (H1N1), A/PR/8/34 (H1N1), and HBPV-VR-32 (H3N2) to evaluate the anti-IAV effect of IQC. The fluorescence microscopy and fluorescence-activated cell sorting analysis showed that IQC significantly decreases the levels of GFP expressed by IAV infection, dose-dependently. Consistent with that, IQC inhibited cytopathic effects by H1N1 or H3N2 IAV infection. Immunofluorescence analysis confirmed that IQC represses the IAV protein expression. Time-of-addition assay showed that IQC inhibits viral attachment and entry and exerts a strong virucidal effect during IAV infection. Hemagglutination assay confirmed that IQC affects IAV HA. Further, IQC potently reduced the NA activities of H1N1 and H3N2 IAV. Collectively, IQC prevents IAV infection at multi-stages via virucidal effects, inhibiting attachment, entry and viral release. Our results indicate that IQC could be developed as a potent antiviral drug to protect against influenza viral infection. 相似文献
77.
78.
Min Ye Lei Xiong Yi Dong Chao Xie Zhen Zhang Lingling Shen Zeyun Li Zhen Yue Puzi Jiang Zhiguang Yuchi Minsheng You Shijun You 《International journal of molecular sciences》2022,23(21)
Methionine aminopeptidases (MetAPs) catalyze the cleavage of the N-terminal initiator methionine (iMet) in new peptide chains and arylamides, which is essential for protein and peptide synthesis. MetAP is differentially expressed in two diamondback moth (DBM; Plutella xylostella) strains: the G88 susceptible strain and the Cry1S1000 strain, which are resistant to the Bt toxin Cry1Ac, implicating that MetAP expression might be associated with Bt resistance. In this study, we identified and cloned a MetAP gene from DBMs, named PxMetAP1, which has a CDS of 1140 bp and encodes a 379 amino acid protein. The relative expression of PxMetAP1 was found to be ~2.2-fold lower in the Cry1S1000 strain compared to that in the G88 strain. PxMetAP1 presents a stage- and tissue-specific expression pattern, with higher levels in the eggs, adults, integument, and fatbody of DBMs. The linkage between PxMetAP1 and Cry1Ac resistance is verified by genetic linkage analysis. The knockout of PxMetAP1 in G88 by CRISPR/Cas9 leads to a ~5.6-fold decrease in sensitivity to the Cry1Ac toxin, further supporting the association between the PxMetAP1 gene and Bt tolerance. Our research sheds light on the role of MetAP genes in the development of Bt tolerance in P. xylostella and enriches the knowledge for the management of such a cosmopolitan pest. 相似文献
79.
Pradeep Subedi Hackwon Do Jun Hyuck Lee Tae-Jin Oh 《International journal of molecular sciences》2022,23(21)
Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of β-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5. 相似文献
80.
Rongrong Liu Xiaoting Meng Xiyao Yu Guoqiang Wang Zhiyong Dong Zhengjie Zhou Mingran Qi Xiao Yu Tong Ji Fang Wang 《International journal of molecular sciences》2022,23(21)
The central nervous system (CNS) controls and regulates the functional activities of the organ systems and maintains the unity between the body and the external environment. The advent of co-culture systems has made it possible to elucidate the interactions between neural cells in vitro and to reproduce complex neural circuits. Here, we classified the co-culture system as a two-dimensional (2D) co-culture system, a cell-based three-dimensional (3D) co-culture system, a tissue slice-based 3D co-culture system, an organoid-based 3D co-culture system, and a microfluidic platform-based 3D co-culture system. We provide an overview of these different co-culture models and their applications in the study of neural cell interaction. The application of co-culture systems in virus-infected CNS disease models is also discussed here. Finally, the direction of the co-culture system in future research is prospected. 相似文献