首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
电工技术   1篇
化学工业   32篇
机械仪表   1篇
能源动力   1篇
轻工业   21篇
水利工程   1篇
无线电   25篇
一般工业技术   24篇
冶金工业   14篇
原子能技术   2篇
自动化技术   8篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   11篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有130条查询结果,搜索用时 0 毫秒
61.
Negatively complexed copper ion by complexing agent like EDTA (Ethylenediaminetetraacteic acid) was removed by predispered solvent extraction (PDSE) using colloidal liquid aphrons (CLAs) made out of Trioctylmetylammonium chloride (Aliquat 336) diluted with nonpolar kerosene. PDSE was found to have higher mass transfer rate than conventional solvent extraction under experimental conditions without mechanical mixing. The effect of type of water-soluble surfactants, phase volume ratio (PVR), concentration of anionic Sodium Dodecyl Benzene Sulfonate (SDBS) on PDSE was investigated. In addition, the effect of anionic SDBS on back extraction in PDSE was also studied. Under experimental conditions with enough mechanical mixing, the amount of copper transferred to Aliquat 336 core from the pregnant phase was compared in both PDSE by using anionic SDBS and conventional solvent extraction. It is concluded that PDSE using Aliquat 336 CLA can be used for treatment of negatively complexed copper without the influence of surfactant. To optimize CLAs-based process, stability of CLAs containing a quaternary ammonium salt Aliquat 336 diluted with kerosene in the continuous phase was investigated by measuring the volume released to surface. To destabilize CLAs, H+, OIL were added. Stability of CLAs was estimated by comparing the half-life obtained. Break-up of destabilization follows pseudo-first-order reaction kinetics at low ionic strength. But, pseudo-first-order model cannot be applied to a region of high ionic strength.  相似文献   
62.
In this letter, we introduce a new middleware architecture and its generic application programming interface (API) (called the T‐DMB MATE API) for terrestrial digital multimedia broadcasting (T‐DMB). Middleware in T‐DMB enables inter‐operable applications to be downloaded from both broadcast and telecommunication networks in advance and to be executed in any type of T‐DMB receiver. The middleware we introduce here is especially designed to support a proposed method for application provisions applied to a concept of application module appropriate to the service environment of T‐DMB. We also verify the designed T‐DMB MATE API through the implementation of the middleware and its application in a PC‐based receiver.  相似文献   
63.
Three new photoreactive brush polyimides (PSPIs), each bearing a different type of chromophore (cinnamoyl (CA), 3‐(2‐furyl)acryloyl (FA), and methacryloyl (MA)) in their bristles (i.e., side groups), are successfully synthesized, and are found to produce good‐quality films with smooth surfaces through conventional spin‐casting and drying processes. These PSPI polymers are thermally stable up to 320 °C. This is the first quantitative investigation of the photoaligning and rubbing‐aligning processabilities of PSPI polymer films, and of the abilities of the resultant films to control the orientation and anchoring of liquid‐crystal (LC) molecules. The chromophores of both poly(1‐cinnamoyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐CA) and poly(1‐3‐(2‐furyl)acryloyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐FA) PSPIs are found to undergo photodimerization in thin films and, to a lesser extent, photoisomerization, resulting in insoluble, crosslinked films. The MA chromophores of 6F‐DAP‐MA PSPI are found to undergo photopolymerization in thin films, which might include photodimerization to a lesser extent, resulting in insoluble, crosslinked films. Thin films of the PSPI polymer chains are found to have excellent unidirectional orientation ability as a result of either photoexposure with linearly polarized UV light (LPUVL) or rubbing. Both the photoaligned and the rubbing‐aligned polymer chains in the PSPI films are demonstrated to effectively induce the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The contribution to LC alignment of the microgrooves developed in the rubbed films is found to be very low. The anchoring energies of the LCs on the photoaligned film surfaces are comparable to those on the rubbing‐aligned film surfaces; the anchoring energies are found to be in the range 0.45–2.25 × 10–5 J m–2, and to depend on which film treatment process is used and which chromophore bristle is present. In summary, the new PSPIs reported in this paper are promising LC alignment‐layer candidates with rubbing‐free processing for the production of advanced LC‐display (LCD) devices, including LCD televisions with large display areas.  相似文献   
64.
Silica shell coatings, which constitute important technology for nanoparticle (NP) developments, are utilized in many applications. The silica shell’s thickness greatly affects distance-dependent optical properties, such as metal-enhanced fluorescence (MEF) and fluorescence quenching in plasmonic nanocomposites. However, the precise control of silica-shell thicknesses has been mainly conducted on single metal NPs, and rarely on complex nanocomposites. In this study, silica shell-coated Ag nanoparticle-assembled silica nanoparticles (SiO2@Ag@SiO2), with finely controlled silica shell thicknesses (4 nm to 38 nm), were prepared, and quantum dots (QDs) were introduced onto SiO2@Ag@SiO2. The dominant effect between plasmonic quenching and MEF was defined depending on the thickness of the silica shell between Ag and QDs. When the distance between Ag NPs to QDs was less than ~10 nm, SiO2@Ag@SiO2@QDs showed weaker fluorescence intensities than SiO2@QD (without metal) due to the quenching effect. On the other hand, when the distance between Ag NPs to QDs was from 10 nm to 14 nm, the fluorescence intensity of SiO2@Ag@SiO2@QD was stronger than SiO2@QDs due to MEF. The results provide background knowledge for controlling the thickness of silica shells in metal-containing nanocomposites and facilitate the development of potential applications utilizing the optimal plasmonic phenomenon.  相似文献   
65.
Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica’s physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application.  相似文献   
66.
A new, comprehensive CAD-oriented modeling methodology for single and coupled interconnects on an Si-SiO2 substrate is presented. The modeling technique uses a modified quasi-static spectral domain electromagnetic analysis which takes into account the skin effect in the semiconducting substrate. Equivalent-circuit models with only ideal lumped elements, representing the broadband characteristics of the interconnects, are extracted. The response of the proposed SPICE compatible equivalent-circuit models is shown to be in good agreement with the frequency-dependent transmission line characteristics of single and general coupled on-chip interconnects  相似文献   
67.
In this study, dense gold-assembled SiO2 nanostructure (SiO2@Au) was successfully developed using the Au seed-mediated growth. First, SiO2 (150 nm) was prepared, modified by amino groups, and incubated by gold nanoparticles (ca. 3 nm Au metal nanoparticles (NPs)) to immobilize Au NPs to SiO2 surface. Then, Au NPs were grown on the prepared SiO2@Au seed by reducing chloroauric acid (HAuCl4) by ascorbic acid (AA) in the presence of polyvinylpyrrolidone (PVP). The presence of bigger (ca. 20 nm) Au NPs on the SiO2 surface was confirmed by transmittance electronic microscopy (TEM) images, color changes to dark blue, and UV-vis spectra broadening in the range of 450 to 750 nm. The SiO2@Au nanostructure showed several advantages compared to the hydrofluoric acid (HF)-treated SiO2@Au, such as easy separation, surface modification stability by 11-mercaptopundecanoic acid (R-COOH), 11-mercapto-1-undecanol (R-OH), and 1-undecanethiol (R-CH3), and a better peroxidase-like catalysis activity for 5,5′-Tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) reaction. The catalytic activity of SiO2@Au was two times better than that of HF-treated SiO2@Au. When SiO2@Au nanostructure was used as a surface enhanced Raman scattering (SERS) substrate, the signal of 4-aminophenol (4-ATP) on the surface of SiO2@Au was also stronger than that of HF-treated SiO2@Au. This study provides a potential method for nanoparticle preparation which can be replaced for Au NPs in further research and development.  相似文献   
68.
Fifteen milliliters of soybean oil having peroxide value (PV) of 0, 2, 4, 6, 8, or 10 meq/kg oil in a 35 mL serum bottle was sealed air-tight with a Teflon rubber septum and aluminum cap and was stored in a forced-air oven at 50 °C. The oxidative stability of soybean oil was evaluated daily for six days by measuring the headspace oxygen content and volatile compounds in the headspace of a sample bottle by gas chromatography. As the initial PV of the oil increased from 0 to 2, 4, 6, 8 and 10, the headspace oxygen decreased and the volatile compounds increased at p < 0.05. Hydroperoxide accelerated the oxidation of soybean oil. The correlation coefficient (R 2) between the headspace oxygen and the volatile compounds was 0.95. The increase of tertiary butyl hydroquinone (TBHQ) from 0 to 50 ppm for the oil of PV 4 or 8 had a significant effect on the oxidative stability at p < 0.05. The increase from 50 to 100 ppm for the oil of PV 4 or 8 did not significantly increase the stability at p > 0.05. The oxidative stability of PV 8 meq/kg and 50 ppm TBHQ was better than the control with PV 0 and 0 ppm TBHQ at p < 0.05. TBHQ was an effective antioxidant to improve the oxidative stability of soybean oil.  相似文献   
69.
Quality control methods for Cnidium officinale and Ligusticum chuanxiong are lacking because their quality is influenced by multiple factors. Thus, there is a need to develop a multifactorial method for measuring quality that is both standardized and practical. Here, we report a profiling method based on gas chromatography-mass spectrometry (GC-MS) to discriminate among the genetic varieties and agricultural origins of C.?officinale and L.?chuanxiong. Our metabolome analysis identified 68 metabolites, 13 of which were newly identified in our samples. The S-plot of the OPLS discriminant analysis enabled us to determine significant biomarkers. Using only double-compound biomarkers, the samples were successfully classified into distinct groups defined by genetic variety and cultivation origin. This method will simplify the process of searching for quality control markers that can be used to determine genetic variety and agricultural origin.  相似文献   
70.
Gas chromatography (GC)-based metabolomics technologies were applied for quality control of Angelicae Radix, an herbal medicine commonly used in Japan and China. Since Angelica roots are priced and graded differently based on their species and cultivation area, there is a need for a simple and reproducible method to discriminate Angelica roots. Here, we used GC-MS profiling data to construct a discrimination method for species and cultivation area of A. Radix. Seventy-six primary metabolites were identified. The quality factors of A. Radix were successfully classified using metabolic profiling and the orthogonal projections to latent structures-discriminant analysis (OPLS-DA) technique. Sorbitol and a glucose/4-aminobutyric acid combination were chosen as bio-markers from S-plot of OPLS-DA. Application of these selected bio-markers to a more practical and cost-efficient system, namely gas chromatography-flame ionization detector (GC-FID) system were also assessed. As a result, the same separations of sorbitol, glucose and 4-aminobutyric acid in box plots were obtained from GC-FID data. Our results demonstrate that GC-based metabolic markers can be readily applied for the establishment of a practical quality control method for A. Radix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号