首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   802篇
  免费   51篇
  国内免费   7篇
电工技术   40篇
综合类   3篇
化学工业   208篇
金属工艺   18篇
机械仪表   32篇
建筑科学   40篇
矿业工程   2篇
能源动力   52篇
轻工业   85篇
水利工程   13篇
石油天然气   15篇
无线电   65篇
一般工业技术   112篇
冶金工业   66篇
原子能技术   3篇
自动化技术   106篇
  2024年   2篇
  2023年   11篇
  2022年   23篇
  2021年   56篇
  2020年   54篇
  2019年   49篇
  2018年   57篇
  2017年   66篇
  2016年   62篇
  2015年   30篇
  2014年   60篇
  2013年   85篇
  2012年   48篇
  2011年   43篇
  2010年   45篇
  2009年   28篇
  2008年   22篇
  2007年   14篇
  2006年   12篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2000年   3篇
  1999年   3篇
  1998年   19篇
  1997年   10篇
  1996年   7篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有860条查询结果,搜索用时 15 毫秒
21.

Abstract  

Methylaluminoxane (MAO)-activated chromium (III) complexes of tridentate SNS ligands of the form (RSCH2–CH2)2NH (R = alkyl, aryl) have been prepared and tested for the trimerization of ethylene to 1-hexene. The effect of ethylene pressure, Al/Cr ratio and S donor substitution on 1-C6 selectivity and productivity has been examined. It is shown that when the substitution on S is pentyl group it will lead to the highest productivity, 174200 g 1-C6/g Cr h, due to the synergistic effect of this group.  相似文献   
22.
In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents.  相似文献   
23.
This study presents morphological and structural variations of K-Feldspar mineral after acid treatment. Both organic and inorganic acids such as C2H2O4, HCl, HNO3 and H2SO4 were employed for this purpose. Another aim of this study was to find an optimum experimental condition for iron (Fe) removal with a minimum damage on the structure of K-Feldspar in which high whiteness index is obtained. The effect of different parameters such as concentration, pH and temperature on the final structure of this mineral was investigated. To find out the chemical composition of powder, XRF was utilized. FTIR, XRD and SEM were employed to study the structure of mineral. Spectrophotometry was chosen to analyze whiteness index of powder after acid treatment. It was found that O—Al—O bond at 647 cm-1 for H2SO4 and HNO3 treated sample disappeared. However, HCl and C2H2O4 were ineffective at this band. In addition, the results revealed an increase in K-Feldspar content, a decrease in Fe content, an increase in whiteness index and no significant structural change for C2H2O4 leached sample. Whiteness index of 91% was obtained for C2H2O4 leached sample with the pH of 2.5 to 3 at temperature of 50℃ and during 1 h.  相似文献   
24.
This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.  相似文献   
25.
Surface functionalization and modification including the grafting process are effective approaches to improve and enhance the reverse osmosis (RO) membrane performance. This work is aimed to synthesize grafted/crosslinked cellulose acetate (CA)/cellulose triacetate (CTA) blend RO membranes using N-isopropylacrylamide (N-IPAAm) as a monomer and N,N-methylene bisacrylamide (MBAAm) as a crosslinker. The morphology of these membranes was analyzed by scanning electron microscopy and their surface roughness was characterized by atomic force microscopy. The performance of these membranes was evaluated through measuring two major parameters of salt rejection and water flux using RO unit at variable operating pressures. It was noted that the surface average roughness obviously decreased from 148 nm for the pure CA/CTA blend membrane with 2.5% CTA to 110 nm and 87 nm for the grafted N-IPAAm and grafted/crosslinked N-IPAAM/MBAAm/CA/CTA-RO membranes, respectively. Moreover, the contact angle decreased from 51.98° to 47.6° and 43.8° after the grafting and crosslinking process. The salt rejection of the grafted CA/CTA-RO membrane by 0.1% N-IPAAm produced the highest value of 98.12% and the water flux was 3.29 L/m2h at 10 bar.  相似文献   
26.
The alginate thickener is the thickener frequently used for reactive printing of textile. The thickener responds with reactive pigments and thus does not lead to the fabric composition becoming stiffer. In this study, we prepared oxidised natural guar gum with hydrogen peroxide, sodium hypochlorite and sodium hydroxide. All other polysaccharides comprise reactive hydroxyl units with a stronger reactivity that must be replaced if they are to be used in reactive printing. Guar derivatives were synthesised and verified using Fourier-transform infrared (FTIR) spectroscopy. Natural thickeners, synthetic guar gum derivatives, have been employed in textile printing technique. In comparison to other synthetic thickeners, modified environmental guar gum polymer has been shown to be an ecologically friendly and low-cost thickener. Cotton fabric printed with modified guar thickening with hydrogen peroxide has even stronger colour strength than fabric printed with sodium alginate thickener, which is highly favourable. Penetration properties, colour value, colour strength, colour fastness to washing, light and rubbing was compared with alginate thickener (readily available on the market). Guar gum thickeners showed enhanced features versus sodium alginate for reactive printing. Partially replaced guar gum is an appropriate option due to the colour and physical properties.  相似文献   
27.
The main purpose of this work was the modification of NaX nanozeolite using copper oxide nanoparticles and various monovalent cations such as K~+, Cs~+, and Ag~+in order to make the negatively charged zeolite surface accessible for anionic forms of uranium which are the most dominant species of uranium in the contaminated radioactive waters at natural p H. Various methods such as the X-ray fluorescence(XRF), X-ray powder diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), and atomic absorption spectroscopy(AAS) were used to characterize the final synthesized absorbents. Batch technique was used to study the adsorption behavior of uranium ions from polluted drinking water by Na X nanozeolite and its modified forms. In order to better understand the performance of them, the results were compared with those that were obtained for synthesizing bulk NaX zeolite and Na-form of clinoptilolite natural zeolite. Preliminary results indicated that uranium sorption increased as the loading level of CuO nanoparticles on NaX nanozeolite increased from 2.1 wt% to 11.2 wt%. In addition,from the obtained data, an increase in uranium removal efficiency resulted as charge/ionic radius ratio of exchanged cation decreased. Also, the effect of contact time, solid–liquid ratio, initial concentration and temperature on the adsorption process was studied. It is worth mentioning that, in this study, the sorption of uranium was performed under natural conditions of pH and the presence of competing cations and anions which are available in drinking waters.  相似文献   
28.
In this study, batchwise absorption of CO2 in N-methyl pyrolidone (NMP) was experimentally performed at different conditions using pressure decay method, and as a result, the equilibrium data, Henry’s law constants, and kinetic data were reported. It was shown that solubility and diffusivity are two important factors affecting the kinetic behaviour of the system. This absorption system was mathematically modelled using Fick’s second law accompanied by a time-dependent boundary condition. Thus, the diffusion coefficients of CO2 in NMP were calculated under different operating conditions by means of the experimental kinetic data. Furthermore, the influence of temperature and pressure on the diffusion coefficient of CO2 in NMP was analysed.  相似文献   
29.
This article discusses the characteristics of turbulent gas–liquid flow through tubular reactors/contactors equipped with screen‐type static mixers from a macromixing perspective. The effect of changing the reactor configuration, and the operating conditions, were investigated by using four different screen geometries of varying mesh numbers. Residence time distribution experiments were conducted in the turbulent regime (4500 < Re < 29,000). Using a deconvolution technique, the RTD function was extracted to quantify the axial/longitudinal liquid‐phase dispersion coefficient. The findings highlight that axial dispersion increases with an increasing flow rate and/or gas‐phase volume fraction. However, regardless of the number and geometry of the mixing elements, reactor configuration, and/or operating conditions, the recorded liquid‐phase axial dispersion coefficients in the presence of screens was lower than that for an empty pipe. Furthermore, the geometry of the screen was found to directly affect the axial dispersion coefficient in the reactor. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1390–1403, 2017  相似文献   
30.
With regard to the fact that currently there is no comprehensive method to predict diameter of polyurethane/solvent fiber from electrospinning, in this study, diameter prediction of polyurethane/solvent fiber was conducted using neural networks and an error of 166 nm was observed. This error shows that artificial neural networks (ANNs) can predict diameter of electrospinning polyurethane fibers well. Then, considering weak repeatability nature of electrospinning in fabricating fibers with desired diameter, least mean square is used to improve stability of neural network model that shows an error of 113 nm, which represented better results compared to common ANN. To investigate the effect of each one of parameters affecting fiber diameter, sensitivity analysis was conducted. Along with this predicting model, sensitivity analysis can be used to reduce parameters space before conducting future studies. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45116.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号