首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   830篇
  免费   2篇
电工技术   1篇
化学工业   3篇
机械仪表   1篇
能源动力   5篇
轻工业   4篇
石油天然气   1篇
无线电   3篇
一般工业技术   6篇
冶金工业   808篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   30篇
  1998年   243篇
  1997年   140篇
  1996年   97篇
  1995年   55篇
  1994年   36篇
  1993年   42篇
  1992年   7篇
  1991年   7篇
  1990年   9篇
  1989年   10篇
  1988年   12篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1983年   4篇
  1982年   2篇
  1981年   7篇
  1980年   12篇
  1977年   20篇
  1976年   53篇
  1975年   1篇
  1974年   1篇
排序方式: 共有832条查询结果,搜索用时 15 毫秒
831.
Cashew kernels are thermally processed to facilitate the removal of their outer skin (testa). Infrared (IR) processing of cashew kernels for differential drying is a novel approach. Processed cashew kernels are valued for their colour, size and texture. The kinetics of colour change and the effect of thermal processing on compressive strength (indicator of brittleness) during IR drying of cashew kernels were investigated. Kernels with testa were dried for different durations (15–55 min) over a range of temperatures (55–95 °C). The change in colour was expressed as total colour difference and browning index. The colour values increased with increasing drying temperature and duration, indicating darkening of the kernel colour. Increase in drying duration reduced the compressive strength, imparting the desired brittleness to the kernel. Optimisation of the drying conditions by response surface methodology and the peelability factor indicated that the best results could be obtained when cashew kernels were dried at 55 °C for 55 min. Copyright © 2004 Society of Chemical Industry  相似文献   
832.
This study aims at examining energy and exergy efficiencies in Turkish transportation sector. Unlike the previous studies, historical data is used to investigate the development of efficiencies of 17 years period from 1988 to 2004. The energy consumption values in tons-of-oil equivalent for eight transport modes of four transportation subsectors of the Turkish transportation sector, including hard coal, lignite, oil, and electricity for railways, oil for seaways and airways, and oil and natural gas for highways, are used. The weighted mean energy and exergy efficiencies are calculated for each mode of transport by multiplying weighting factors with efficiency values of that mode. They are then summed up to calculate the weighted mean overall efficiencies for a particular year. Although the energy and exergy efficiencies in Turkish transport sector are slightly improved from 1988 to 2004, the historical pattern is cyclic. The energy efficieny is found to range from 22.16% (2002) to 22.62% (1998 and 2004) with a mean of 22.42±0.14% and exergy efficiency to range from 22.39% (2002) to 22.85% (1998 and 2004) with a mean of 22.65±0.15%. Overall energy and exergy efficiencies of the transport sector consist mostly of energy and exergy efficiencies of the highways subsector in percentages varying from 81.5% in 2004 to 91.7% in 2002. The rest of them are consisted of other subsectors such as railways, seaways, and airways. The overall efficiency patterns are basically controlled by the fuel consumption in airways in spite of this subsector's consisting only a small fraction of total. The major reasons for this are that airways efficiencies and the rate of change in fuel consumption in airways are greater than those of the others. This study shows that airway transportation should be increased to improve the energy and exergy efficiencies of the Turkish transport sectors. However, it should also be noted that no innovations and other advances in transport technologies are included in the calculations. The future studies including such details will certainly help energy analysts and policy makers more than our study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号