排序方式: 共有22条查询结果,搜索用时 31 毫秒
21.
This paper discusses the issue of integrating production planning and preventive maintenance in manufacturing production systems. In particular, it tackles the problem of integrating production and preventive maintenance in a system composed of parallel failure-prone production lines. It is assumed that when a production line fails, a minimal repair is carried out to restore it to an ‘as-bad-as-old’ status. Preventive maintenance is carried out, periodically at the discretion of the decision maker, to restore the production line to an ‘as-good-as-new’ status. It is also assumed that any maintenance action, performed on a production line in a given period, reduces the available production capacity on the line during that period. The resulting integrated production and maintenance planning problem is modeled as a nonlinear mixed-integer program when each production line implements a cyclic preventive maintenance policy. When noncyclical preventive maintenance policies are allowed, the problem is modeled as a linear mixed-integer program. A Lagrangian-based heuristic procedure for the solution of the first planning model is proposed and discussed. Computational experiments are carried out to analyze the performance of the method for different failure rate distributions, and the obtained results are discussed in detail. 相似文献
22.
In this paper, we first propose a new recombination operator called the two-stage recombination and then we test its performance in the context of the multiobjective 0/1 knapsack problem (MOKP). The proposed recombination operator generates only one offspring solution from a selected pair of parents according to the following two stages. In the first stage, called genetic shared-information stage or similarity-preserving stage, the generated offspring inherits all parent similar genes (i.e., genes or decision variables having the same positions and the same values in both parents). In the second stage, called problem fitness-information stage, the parent non-similar genes (i.e., genes or decision variables having the same positions but different values regarding the two parents) are selected from one of the two parents using some fitness information. Initially, we propose two different approaches for the second stage: the general version and the restricted version. However, the application of the restricted version to the MOKP leads to an improved version which is more specific to this problem. The general and the MOKP-specific versions of the two-stage recombination are compared against three traditional crossovers using two well-known multiobjective evolutionary algorithms. Promising results are obtained. We also provide a comparison between the general version and the MOKP-specific version. 相似文献