首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   19篇
化学工业   55篇
金属工艺   6篇
机械仪表   7篇
建筑科学   5篇
能源动力   38篇
轻工业   20篇
水利工程   2篇
无线电   13篇
一般工业技术   41篇
冶金工业   8篇
自动化技术   29篇
  2023年   5篇
  2022年   3篇
  2021年   14篇
  2020年   8篇
  2019年   11篇
  2018年   21篇
  2017年   10篇
  2016年   13篇
  2015年   10篇
  2014年   10篇
  2013年   22篇
  2012年   20篇
  2011年   20篇
  2010年   8篇
  2009年   10篇
  2008年   10篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1980年   1篇
排序方式: 共有224条查询结果,搜索用时 359 毫秒
41.
DNA-based assays offer precision in ascertaining the species/cultivar origin of agro-food products. Yet, obtaining DNA of sufficient quality and quantity is the main challenge while performing DNA-based food authentication analyses. The aim of the present work was to standardize a cost-efficient, easy-to-apply, yet effective plant oil DNA isolation protocol that allows reliable downstream PCR-based analyses. Because capillary electrophoresis (CE) separation of species/cultivar discriminating genomic fragments is a widely adopted approach in food genomics, a CE system was utilized in order to assess the performance of the proposed cetyl trimethyl ammonium bromide (CTAB)-based protocol. A plastid intergenic spacer and a nuclear olive gene were used as targets in order to evaluate the amplificability of DNA extracted with the CTAB-based protocol. The plastid barcode not only allowed assessing the reproducibility of PCR amplifications from the extracted oil DNA samples (olive, hazelnut, corn, rapeseed, cottonseed, and soybean oils) but also proved successful in discriminating all tested oil crop species based on amplified fragment length polymorphisms. Moreover, the barcode assay proved successful in correctly identifying the tested olive oil: cottonseed oil blends as admixtures of the two oil species. Thus, it was also feasible to demonstrate the potential of the barcode sequence as a discriminatory analyte to detect adulteration in plant oils. In addition, application of a CAPS (cleaved amplified polymorphic sequence) assay designed to genotype a nuclear SNP (single nucleotide polymorphism) marker resulted in the successful identification of the two single-cultivar olive oils included in the study. As a result of the present work, it was feasible to standardize a reliable and cost-efficient DNA extraction protocol that works well with both unrefined (olive and hazelnut) and refined (corn, rapeseed, cottonseed, and soybean) oils.  相似文献   
42.
In this study, a pilot solar tubular photobioreactor was successfully implemented for fed batch operation in outdoor conditions for photofermentative hydrogen production with Rhodobacter capsulatus (Hup) mutant. The bacteria had a rapid growth with a specific growth rate of 0.052 h−1 in the batch exponential phase and cell dry weight remained in the range of 1–1.5 g/L throughout the fed batch operation. The feeding strategy was to keep acetic acid concentration in the photobioreactor at the range of 20 mM by adjusting feed acetate concentration. The maximum molar productivity obtained was 0.40 mol H2/(m3 h) and the yield obtained was 0.35 mol H2 per mole of acetic acid fed. Evolved gas contained 95–99% hydrogen and the rest was carbon dioxide by volume.  相似文献   
43.
The effect of growth conditions and catalyst lifetime on the supergrowth of carbon nanotubes (CNTs) through a water assisted chemical vapor deposition has been investigated. The reasons behind the observed sudden termination of the CNT growth were explored. A proper amount of water was found to improve the activity of the catalyst and enhance the growth rate of CNTs. However, the introduction of water did not extend the catalyst lifetime leading to unavoidable termination of the CNT growth. Further experiments demonstrated that in addition to catalyzing the CNT growth, catalyst particles can also decompose/etch the C sp2/sp3 bonds including those in the CNTs. The existing termination mechanism for the CNT growth fails to explain this. We therefore propose a model based on the catalyst phase transformation using the Johnson–Mehl–Avrami–Kolmogorov theory to predict the growth rate and termination of the CNT growth.  相似文献   
44.
Elucidation of complex heterogeneous catalytic mechanisms at the molecular level is a challenging task due to the complex electronic structure and the topology of catalyst surfaces. Heterogeneous catalyst surfaces are often quite dynamic and readily undergo significant alterations under working conditions. Thus, monitoring the surface chemistry of heterogeneous catalysts under industrially relevant conditions such as elevated temperatures and pressures requires dedicated in situ spectroscopy methods. Due to their photons-in, photons-out nature, vibrational spectroscopic techniques offer a very powerful and a versatile experimental tool box, allowing real-time investigation of working catalyst surfaces at elevated pressures. Infrared reflection absorption spectroscopy (IRAS or IRRAS), polarization modulation-IRAS and sum frequency generation techniques reveal valuable surface chemical information at the molecular level, particularly when they are applied to atomically well-defined planar model catalyst surfaces such as single crystals or ultrathin films. In this review article, recent state of the art applications of in situ surface vibrational spectroscopy will be presented with a particular focus on elevated pressure adsorption of probe molecules (e.g. CO, NO, O2, H2, CH3OH) on monometallic and bimetallic transition metal surfaces (e.g. Pt, Pd, Rh, Ru, Au, Co, PdZn, AuPd, CuPt, etc.). Furthermore, case studies involving elevated pressure carbon monoxide oxidation, CO hydrogenation, Fischer–Tropsch, methanol decomposition/partial oxidation and methanol steam reforming reactions on single crystal platinum group metal surfaces will be provided. These examples will be exploited in order to demonstrate the capabilities, opportunities and the existing challenges associated with the in situ vibrational spectroscopic analysis of heterogeneous catalytic reactions on model catalyst surfaces at elevated pressures.  相似文献   
45.
The stress–strain behaviour of polypropylene fibres is evaluated for various tensile strain rates. Fibre samples are extracted from a thermally bonded nonwoven and fixed in a low-load tensile test machine. A methodology is introduced to implement a constant true strain rate at high strain tests for conventional tensile test machines. The obtained results indicate that polypropylene fibres show a highly viscous behaviour, especially during the initial stage of load application. No significant difference in a tensile behaviour of fibres was observed for loading regimes with a constant true strain rate and a constant engineering strain rate.  相似文献   
46.
Synthesis of silver‐doped zinc oxide (ZnO:Ag) nanoparticles through precipitation method has been reported. The synthesis was conducted at room temperature and no subsequent thermal treatment was applied. ZnO nanoparticles were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), fourier transmission infrared spectroscopy (FTIR), and ultraviolet‐visible (UV–Vis) spectroscopy. Detailed crystallographic investigation was accomplished through Rietveld refinement. The effect of silver content on structural and optical properties of resultant ZnO nanoparticles has been reported. It was found that silver doping results in positional shifts for the XRD peaks and the absorption band edge of ZnO. These were attributed to the substitutional incorporation of Ag+ ions into Zn2+ sites within the ZnO crystal. In addition, higher silver incorporation resulted in smaller size for ZnO nanoparticles. The photocatalytic activity of the ZnO:Ag nanoparticles was also determined by methylene orange (MO) degradation studies and compared to that of undoped ZnO. Improved photocatalytic activity was obtained for ZnO:Ag nanoparticles. It has been shown that an optimum amount of silver dopant is required to obtain maximum photocatalytic activity.  相似文献   
47.
In this study, four different fresh Kashar cheese samples were ripened for 90 days. The physicochemical properties, texture attributes, fatty acid composition and volatile compound profiles of the samples were measured every 30 days of ripening. The texture properties of the cheese samples were significantly affected by the duration of the ripening period. The results of this study highlighted that texture parameters as a function of ripening period should be considered for both fresh and aged Kashar cheeses to determine the ripening period as they are very important for consumer acceptability and consumption of the end product.  相似文献   
48.
A novel biomimetic vascular graft scaffolds were produced by electrospinning method with the most superior characteristics to be a proper biomimetic small diameter blood vessel using Polycaprolactone(PCL), Ethyl Cellulose(EC) and Collagen Type-1 were used to create the most convenient synergy of a natural and synthetic polymer to achieve similarity to native small diameter blood vessels. Scanning Electron Microscopy(SEM), Fourier Transform Infrared Spectroscopy(FTIR), Differential Scanning Calorimetry Analysis(DSC), tensile measurement tests, and in-vitro and in-vivo applications were performed. Results indicated significant properties such as having 39.33?nm minimum, 104.98?nm average fiber diameter, 3.2?MPa young modulus and 135% relative cell viability.  相似文献   
49.
A three-dimensional non-isothermal mathematical model is developed in a triple mixed serpentine flow multichannel domain for a high temperature PEM Fuel Cell having a phosphoric acid doped PBI membrane as electrolyte and an active area of 25 cm2 within Comsol Multiphysics. The inlet temperatures of cathode and anode reactants are taken as 438 K. Model predicts pressure, and temperature distribution along the channels and membrane current density distribution over the membrane electrodes. The model results are obtained at two different operation voltages, 0.45 V and 0.60 V. Resulting average current densities are respectively 0.313 A cm?2 and 0.224 A cm?2. The non-isothermal model results are compared to isothermal model results from a previous study and various other single channel non-isothermal model results available in the literature. The pressure drop at cathode compartment is predicted to be 6500 Pa, whereas it is found to be 6400 Pa for the isothermal model. The temperature difference within the system is found to be 0.18 K for the operation voltage of 0.6 V, whereas this value increases to 0.31 K for the operation voltage of 0.45 V. The temperature difference isocontours are illustrated for the whole cell. Considering changes in temperature, one can employ isothermal operation assumption for this system as an approximation and simplification for the governing equations, since the variation in the temperature within the cell is less than 1 K. It should be emphasized that multichannel model predictions are more realistic compared to single channel models. The model developed here can be extended to larger electrode active area and different multichannel configurations.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号