首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   13篇
  国内免费   5篇
电工技术   1篇
综合类   8篇
化学工业   45篇
金属工艺   6篇
机械仪表   5篇
建筑科学   4篇
能源动力   13篇
轻工业   5篇
水利工程   2篇
石油天然气   9篇
无线电   8篇
一般工业技术   28篇
冶金工业   4篇
自动化技术   13篇
  2023年   4篇
  2022年   7篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   16篇
  2015年   5篇
  2014年   9篇
  2013年   5篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1990年   2篇
  1989年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 609 毫秒
21.
Polypropylene(PP)/Polystyrene(PS) (PP/PS = 80/20) blend with different types of fillers were prepared by using melt method. Four different types of fillers, namely mesoporous MCM-41 (without template), nano-SiO2, Polymethylmethacrylate (PMMA)/MCM-41 and PMMA/SiO2 were considered. For PMMA/MCM-41 filler, the synthesis of the filler consisting of entrapped strand of PMMA within the pores of mesoporous MCM-41 (without template) was described. The mechanical properties of the blend determined as the nano-fillers contents and the different types of blend were found to vary with the different interface between fillers and the matrix. SEM revealed a good interaction between the matrix phases and PMMA/MCM-41 or MCM-41 (without template). The decreased Tg of PS implied that the good adhesion between PP and PS blend was obtained by adding PMMA/MCM-41 nano-filler.  相似文献   
22.

In theory, emergence of robustness concept has pushed decision-makers toward designing alternatives, such as resistant against the potential fluctuations fueled by uncertain surrounding environment. This study promotes an objective-based multi-attributes decision-making framework that takes into account the uncertainties associated with the impacts of the climate change on water resources systems. To capture the uncertainties of climate change, Monte Carlo approach has been used to generate a series of ensembles. These generated ensembles represent the stochastic behavior of the hydro-climatic variables under climate change. This framework represents the inherent uncertainties associated with hydro-climatic simulations. Next, a coupled TOPSIS/Entropy multi-attribute decision-making framework has been formed to prioritize the feasible alternatives using system performance measures. The main objective of this framework is to minimize the risk of deceptive and subjective assessments during decision-making process. Karkheh River basin has been selected as a case study to demonstrate the implication of this framework. Using a set of system performance attributes, the performance of two hydropower systems has been estimated during the baseline period and under the future climate change conditions. According to the conducted frequency analysis, the alternative in which both hydropower projects would go under construction emerged as the robust solution (i.e., there was a 99.9% chance that it outperforms other solutions). The results indicate that the construction of these hydropower systems leads to the increase of Karkheh River basin robustness in the future.

  相似文献   
23.
Scientometrics - This study aims to analyze 343 retraction notices indexed in the Scopus database, published in 2001–2019, related to scientific articles (co-)written by at least one author...  相似文献   
24.
Electrophoretic deposition (EPD) is a versatile technique that has drawn attention due to its ease of use and performance in depositing high-quality layers at room temperature. This technique principle is based on the deposition of charged particles from a stable colloidal suspension on a conductive substrate using either a direct or alternating current. Using relatively simple and low-cost equipment, the EPD technique enables the deposition of layers with controlled microstructures at nanoscale. The EPD technique has been particularly successful in the fabrication of the electrocatalyst layers for low-temperature fuel cells, which are anchored on the top of the fuel cell electrodes. In comparison with other electrocatalyst layer deposition techniques such as drop-casting, the EPD technique offers clear advantages for the control of the thickness and packing density of the electrocatalyst layers. Owing to the dense packing density, electrocatalyst layers deposited by EPD could achieve enhanced conductivity and efficiency. The present review aims at comprehensively evaluating the recently published results on the electrocatalyst layers fabricated by EPD and applied in oxygen reduction reactions, alcohol electro-oxidation reactions, hydrogen evolution reactions, and oxygen evolution reactions.  相似文献   
25.
Leakages result in considerable loss of water in water pipe networks. Therefore it is an important issue to detect leakage amount and its approximate location. Leakages in water distribution system are directly related to the operating pressure. In the current study, a new model is proposed for leakage amount and location detection and it is applied into two benchmark water distribution networks. In the proposed method, the water distribution networks are divided into three pressure zones in order to consider the leakage differences in different operating pressures. Then, nodal pressures and demands are calibrated using a new multi objective ant colony based optimization model. In this method, leaks are simulated as extra nodal demands. For determining the nodes where leakage happens, a probability based scheme is used. The leakage occurrence probability varies depending on the pressure zone that each node is located. The results illustrate the applicability of the proposed model for detecting the leakages in water distribution systems.  相似文献   
26.
Porous materials are ubiquitous in nature and have found a wide range of applications because of their unique absorption, optical, mechanical, and catalytic properties. Large surface‐area‐to‐volume ratio is deemed a key factor contributing to their catalytic properties. Here, it is shown that introducing tunable nanopores (50–700 nm) to organic semiconductor thin films enhances their reactivity with volatile organic compounds by up to an order of magnitude, while the surface‐area‐to‐volume ratio is almost unchanged. Mechanistic investigations show that nanopores grant direct access to the highly reactive sites otherwise buried in the conductive channel of the transistor. The high reactivity of nanoporous organic field‐effect transistors leads to unprecedented ultrasensitive, ultrafast, selective chemical sensing below the 1 ppb level on a hundred millisecond time scale, enabling a wide range of health and environmental applications. Flexible sensor chip for monitoring breath ammonia is further demonstrated; this is a potential biomarker for chronic kidney disease.  相似文献   
27.
This paper presents a numerical study on FRP-wrap strengthened reinforced concrete columns subjected to eccentric axial loads using ABAQUS®. For modeling of concrete dilation under non-uniform confinement pressure, a smooth cap plasticity model was combined with concrete damaged plasticity model. This model includes different concrete compaction–dilation behaviors which is pressure-dependent. Proposed model has been calibrated and verified for concrete in number of unconfined and full-wrapped columns under combination of axial force and bending moment. Presented numerical predictions are shown to be in close agreement with existing experimental results. The effect of laminate stacking sequences and column slenderness on strength and ductility of members was examined thoroughly. The results of this study recommend taking fiber angles between zero (circumferential) and 30° can improve ultimate strength and ductility of confined short concrete columns. However, for slender concrete columns the optimum fiber orientation can be set between 15° and 30°.  相似文献   
28.
The gas generation from reactions between direct reduced iron (DRI) pellets and steelmaking slags is known to take place in two stages; (1) the reaction of FeO and carbon within DRI, i.e., pellet internal reaction, followed by (2) the reduction of slag FeO with DRI carbon at the pellet?Cslag interface, if any carbon remains from the first step. To understand the controlling mechanism of the reaction between FeO and C inside DRI, the rate of the gas release and the temperature of pellets suspended in a slag-free atmosphere were quantified. The results were used to determine the apparent thermal conductivity of DRI that showed values of approximately 0.5 to 2 W.m?1.K?1 for a temperature range of 573?K to 1273?K (300?°C to 1000?°C). Furthermore, it was found that the experimental gas evolution rates are consistent with the values predicted by a heat?Ctransfer based model, confirming that the FeO-C reaction within pellet is controlled by the rate of heat transfer from the slag to the DRI pellet.  相似文献   
29.
ABSTRACT

In recent years, a growing interest has been created for improvement of human interaction with computers. Hence, automatic recognition of facial expressions has become one of the active research topics. The purpose of this paper is to identify facial expressions, by using differential geometric features. In the proposed method, only the first and last images are used and differential features are extracted from these two images. Differential geometric features are extracted from changes in the important points of the face in the two images. In this method, the distance between the important points of the face and the reference point was calculated in both directions x and y, for two images, and with the difference between the distance, the differential geometric features between the two images were obtained. Based on the results, with this method, recognition accuracy of six facial expressions in the database was 96.44%, CK +.  相似文献   
30.
A novel triple-layer proton exchange membrane comprising two thin layers of structurally modified chitosan, as methanol barrier layers, both sides coated with Nafion®105 is prepared and tested for high-performance direct methanol fuel cell applications. A tight adherence is detected between layers from SEM and EDX data for the cross-sectional area of the newly designed membrane, which are attributed to high affinity of opposite charged polyelectrolyte layers. Proton conductivity and methanol permeability measurements show improved transport properties for the multi-layer membrane compared to Nafion®117 with approximately the same thickness. Moreover, direct methanol fuel cell tests reveal higher open circuit voltage, power density output, and overall fuel cell efficiency for the triple-layer membrane than Nafion®117, especially at concentrated methanol solutions. A power output of 68.10 mW cm?2 at 5 M methanol feed is supplied using multi-layer membrane, which is found to be about 72% more than that of for Nafion®117. In addition, fuel cell efficiency for multi-layer membrane is measured about 19.55% and 18.45% at 1 and 5 M methanol concentrations, respectively. Owing to the ability to provide high power output, significantly reduced methanol crossover, ease of preparation and low cost, the triple-layer membrane under study could be considered as a promising polyelectrolyte for high-performance direct methanol fuel cell applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号