首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736597篇
  免费   10408篇
  国内免费   1669篇
电工技术   13350篇
综合类   600篇
化学工业   115485篇
金属工艺   32675篇
机械仪表   24449篇
建筑科学   17225篇
矿业工程   5108篇
能源动力   18242篇
轻工业   61189篇
水利工程   8759篇
石油天然气   16851篇
武器工业   42篇
无线电   77779篇
一般工业技术   149904篇
冶金工业   124304篇
原子能技术   17110篇
自动化技术   65602篇
  2021年   6751篇
  2020年   5092篇
  2019年   6476篇
  2018年   15445篇
  2017年   15726篇
  2016年   14520篇
  2015年   7961篇
  2014年   12715篇
  2013年   32972篇
  2012年   21028篇
  2011年   30290篇
  2010年   25041篇
  2009年   26581篇
  2008年   27157篇
  2007年   27880篇
  2006年   19949篇
  2005年   19947篇
  2004年   18436篇
  2003年   17747篇
  2002年   16681篇
  2001年   15792篇
  2000年   15131篇
  1999年   14895篇
  1998年   35528篇
  1997年   25695篇
  1996年   19978篇
  1995年   15253篇
  1994年   13587篇
  1993年   13333篇
  1992年   10204篇
  1991年   9809篇
  1990年   9669篇
  1989年   9418篇
  1988年   9134篇
  1987年   8214篇
  1986年   8009篇
  1985年   9064篇
  1984年   8253篇
  1983年   7786篇
  1982年   7051篇
  1981年   7231篇
  1980年   6882篇
  1979年   7001篇
  1978年   6905篇
  1977年   7720篇
  1976年   9789篇
  1975年   6174篇
  1974年   5937篇
  1973年   6098篇
  1972年   5178篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
62.
Multimedia Tools and Applications - The design of robots capable of operating autonomously in changing and unstructured environments, requires using complex software architectures in which,...  相似文献   
63.
Russian Engineering Research - The stability of robot-mower motion in a specific direction is considered. The direction is regulated by means of an angular sensor and a programmable controller...  相似文献   
64.
Revin  A. A.  Mikhaylova  A. M.  Konakov  A. A.  Tsyplenkov  V. V.  Shastin  V. N. 《Semiconductors》2021,55(12):879-884
Semiconductors - The wave functions of electrons localized at P, As, and Sb shallow donors in Ge are calculated in the envelope function approximation taking into account valley–orbit...  相似文献   
65.
This review examines the application, limitations, and potential alternatives to the Hagberg–Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.  相似文献   
66.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
67.
Theoretical Foundations of Chemical Engineering - The effect of the electrolyte composition, mass-transfer conditions, pore diameter, interpore distance, and electric parameters on the formation of...  相似文献   
68.
In flash sintering experiments, the thermal history of the sample is key to understanding the mechanisms underlying densification rate and final properties. By combining robust temperature measurements with current-ramp-rate control, this study examined the effects of the thermal profile on the flash sintering of yttria-stabilized zirconia, with experiments ranging from a few seconds to several hours. The final density was maximized at slower heating rates, although processes slower than a certain threshold led to grain growth. The amount of grain growth observed was comparable to a similar conventional thermal process. The bulk electrical conductivity correlated with the maximum temperature and cooling rate. The only property that exhibited behavior that could not be attributed to solely the thermal profile was the grain boundary conductivity, which was consistently higher than conventional in flash sintered samples. These results suggest that, during flash sintering, athermal electric field effects are relegated to the grain boundary.  相似文献   
69.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
70.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号