首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   604篇
  免费   32篇
  国内免费   1篇
电工技术   3篇
化学工业   184篇
金属工艺   15篇
机械仪表   23篇
建筑科学   6篇
能源动力   17篇
轻工业   42篇
水利工程   2篇
石油天然气   1篇
无线电   85篇
一般工业技术   128篇
冶金工业   23篇
原子能技术   4篇
自动化技术   104篇
  2024年   1篇
  2023年   6篇
  2022年   18篇
  2021年   22篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   19篇
  2016年   15篇
  2015年   8篇
  2014年   36篇
  2013年   33篇
  2012年   49篇
  2011年   67篇
  2010年   44篇
  2009年   42篇
  2008年   41篇
  2007年   39篇
  2006年   33篇
  2005年   29篇
  2004年   22篇
  2003年   13篇
  2002年   11篇
  2001年   7篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有637条查询结果,搜索用时 11 毫秒
621.
The reactions of ozone with a series of monoterpenes (α-pinene, sabinene, limonene and myrcene) were investigated in a novel flow reactor dedicated to the investigation of secondary organic aerosol (SOA) formation. Rate constants for the gas phase reactions and nucleation thresholds were determined at T~296 K, P~764 Torr under dry conditions (dew point ≤?33 °C) and in absence of OH radicals scavenger and seed particles. Comparison with the literature as well as data from a simulation chamber showed good agreement. The experiments also show that the novel flow reactor improves the accuracy in evaluating the nucleation thresholds during the ozonolysis of monoterpenes and show that aerosol flow reactor is a useful tool to study the SOA nucleation step. Given as an upper limit, the nucleation thresholds obtained are (in molecule cm?3/ppb): α-pinene, 3.9×1010/1.56; sabinene, 6.2×109/0.26; limonene, 1.1×1010/0.43 and myrcene 2.1×1010/0.83.  相似文献   
622.
Photoredox catalysis is now well-known in organic synthesis for the formation of free radicals under very soft irradiations conditions (e.g. sunlight, household fluorescence or LED bulbs, Xe lamp). This method has been introduced here to the polymer chemistry area to initiate ring opening polymerizations (ROP) or free radical polymerizations (FRP). The present paper will give an up-to date situation of the photocatalyst achievements in FRP and ROP.  相似文献   
623.
Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive 36Cl? and 14CO32?. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO·Al2O3·xCaCl2·(1 ? x)CaSO4·(12 ? 2x)·H2O (0.36  x  0.50).  相似文献   
624.
625.
The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.  相似文献   
626.
Novel benzene polyphosphates were synthesised as inositol polyphosphate mimics and evaluated against type-I inositol 1,4,5-trisphosphate 5-phosphatase, which only binds soluble inositol polyphosphates, and against the PH domain of protein kinase Balpha (PKBalpha), which can bind both soluble inositol polyphosphates and inositol phospholipids. The most potent trisphosphate 5-phosphatase inhibitor is benzene 1,2,4-trisphosphate (2, IC(50) of 14 microM), a potential mimic of D-myo-inositol 1,4,5-trisphosphate, whereas the most potent tetrakisphosphate Ins(1,4,5)P(3) 5-phosphatase inhibitor is benzene 1,2,4,5-tetrakisphosphate, with an IC(50) of 4 microM. Biphenyl 2,3',4,5',6-pentakisphosphate (4) was the most potent inhibitor evaluated against type I Ins(1,4,5)P(3) 5-phosphatase (IC(50) of 1 microM). All new benzene polyphosphates are resistant to dephosphorylation by type I Ins(1,4,5)P(3) 5-phosphatase. Unexpectedly, all benzene polyphosphates studied bind to the PH domain of PKBalpha with apparent higher affinity than to type I Ins(1,4,5)P(3) 5-phosphatase. The most potent ligand for the PKBalpha PH domain, measured by inhibition of biotinylated diC(8)-PtdIns(3,4)P(2) binding, is biphenyl 2,3',4,5',6-pentakisphosphate (4, K(i)=27 nm). The approximately 80-fold enhancement of binding relative to parent benzene trisphosphate is explained by the involvement of a cation-pi interaction. These new molecular tools will be of potential use in structural and cell signalling studies.  相似文献   
627.
The kinetics and mechanism of the preferential oxidation of carbon monoxide in the presence of hydrogen (PrOx) over an unsupported gold powder (mean particle size 20 nm and free of silver) have been investigated using flow fixed bed catalytic testing and diffuse reflectance infrared Fourier transform spectroscopy coupled to mass spectrometry (operando DRIFTS or DRIFTS-MS). It is shown that the presence of H2 has a favourable effect on the oxidation of CO, either by strongly accelerating the reaction or by preventing the catalyst deactivation, depending on the conditions used. Variation of the hydrogen partial pressure has allowed us to determine partial reaction orders for both CO oxidation and H2 oxidation under PrOx conditions. An infrared band at 2113 cm−1, corresponding to on-top CO adsorption on metallic gold, has been observed below 150 °C. In addition, adsorbed hydroxyl groups gradually develop simultaneously to gas-phase water in the course of the reaction at increasing temperatures. The promotional effect of hydrogen is ascribed to highly oxidative HxOy intermediates formed from the interaction between H2 and O2 on the gold surface.  相似文献   
628.
A new dicyanodistyrylbenzene‐based phasmidic molecule, (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(3,4,5‐tris(dodecyloxy)phenyl)acrylonitrile), GDCS, is reported, which forms a hexagonal columnar liquid crystal (LC) phase at room temperature (RT). GDCS molecules self‐assemble into supramolecular disks consisting of a pair of molecules in a side‐by‐side disposition assisted by secondary bonding interactions of the lateral polar cyano group, which, in turn, constitute the hexagonal columnar LC structure. GDCS shows very intense green/yellow fluorescence in liquid/solid crystalline states, respectively, in contrast to the total absence of fluorescence emission in the isotropic melt state according to the characteristic aggregation‐induced enhanced emission (AIEE) behavior. The AIEE and two‐color luminescence thermochromism of GDCS are attributed to the peculiar intra‐ and intermolecular interactions of dipolar cyanostilbene units. It was found that the intramolecular planarization and restricted molecular motion associated with a specific stacking situation in the liquid/solid crystalline phases are responsible for the AIEE phenomenon. The origin of the two‐color luminescence was elucidated to be due to the interdisk stacking alteration in a given column driven by the specific local dipole coupling between molecular disks. These stacking changes, in turn, resulted in the different degree of excited‐state dimeric coupling to give different emission colors. To understand the complicated photophysical properties of GDCS, temperature‐dependent steady‐state and time‐resolved PL measurements have been comprehensively carried out. Uniaxially aligned and highly fluorescent LC and crystalline microwires of GDCS are fabricated by using the micromolding in capillaries (MIMIC) method. Significantly enhanced electrical conductivity (0.8 × 10?5 S?cm?1/3.9 × 10?5 S?cm?1) of the aligned LC/crystal microwires were obtained over that of multi‐domain LC sample, because of the almost perfect shear alignment of the LC material achieved in the MIMIC mold.  相似文献   
629.
Over the next few years, it is expected that new, energetic, multifunctional materials will be engineered. There is a need for new methods to assemble such materials from manufactured nanopowders. In this article, we demonstrate a DNA‐directed assembly procedure to produce highly energetic nanocomposites by assembling Al and CuO nanoparticles into micrometer‐sized particles of an Al/CuO nanocomposite, which has exquisite energetic performance in comparison with its physically mixed Al/CuO counterparts. Using 80 nm Al nanoparticles, the heat of reaction and the onset temperature are 1.8 kJ g?1 and 410 °C, respectively. This experimental achievement relies on the development of simple and reliable protocols to disperse and sort metallic and metal oxide nanopowders in aqueous solution and the establishment of specific DNA surface‐modification processes for Al and CuO nanoparticles. Overall, our work, which shows that DNA can be used as a structural material to assemble Al/Al, CuO/CuO and Al/CuO composite materials, opens a route for molecular engineering of the material on the nanoscale.  相似文献   
630.
X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy which makes use of X-ray Magnetic Circular Dichroism (XMCD) to probe the resonant precession of local magnetization components in a strong microwave pump field. In Sections?1 and 2, we briefly review the conceptual bases of XDMR and the potential interest of increasing the pumping frequency up to the THz frequency range. In Sections?35, we discuss the feasibility of such challenging experiments. Starting from a comparison of experiments carried out either in the transverse (TRD) or longitudinal (LOD) detection geometries, we show that XDMR measurements at sub-THz frequencies require a substantial increase in pumping power: this is where a gyrotron source looks most appropriate. It is the aim of this paper to discuss how to conduct such experiments, emphasis being laid on feasibility tests recently carried out at the ESRF using a refurbished version of Gyrotron FU-II built at the FIR-FU. In this context, we propose a new detection scheme of sub-THz XDMR spectra based on the concept of frequency-mixing in LOD geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号