首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   25篇
  国内免费   2篇
电工技术   31篇
综合类   2篇
化学工业   79篇
金属工艺   8篇
机械仪表   3篇
建筑科学   6篇
矿业工程   2篇
能源动力   13篇
轻工业   41篇
水利工程   4篇
石油天然气   5篇
无线电   22篇
一般工业技术   41篇
冶金工业   12篇
自动化技术   28篇
  2024年   2篇
  2023年   4篇
  2022年   10篇
  2021年   8篇
  2020年   20篇
  2019年   11篇
  2018年   25篇
  2017年   20篇
  2016年   19篇
  2015年   6篇
  2014年   15篇
  2013年   30篇
  2012年   16篇
  2011年   15篇
  2010年   21篇
  2009年   15篇
  2008年   9篇
  2007年   14篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1997年   5篇
  1995年   3篇
  1987年   1篇
  1985年   1篇
  1979年   2篇
  1977年   1篇
  1974年   2篇
排序方式: 共有297条查询结果,搜索用时 31 毫秒
81.
In this study the structural and electronic properties of III-nitride monolayers XN(X=B, Al, Ga and In) under different percentages of homogeneous and shear strain are investigated using the full potential linearized augmented plane wave within the density functional theory. Geometry optimizations indicate that GaN and InN monolayers get buckled under compressive strain.Our calculations show that the free-strains of these four monolayers have an indirect band gap. By applying compressive biaxial strain, a transition from indirect to direct band gap occurs for GaN and InN, while the character of band gap for BN and AlN is not changed. Under tensile strain, only BN monolayer behaves as direct band gap semiconductor. In addition, when the shear strain is applied, only InN undergoes an indirect to direct band gap transition. Furthermore, the variations of band gap versus strain for III-nitride monolayers have been calculated. When a homogeneous uniform strain, in the range of [.10%, +10%], is applied to the monolayers, the band gap can be tuned for from 3.92 eV to 4.58 eV for BN, from 1.67 eV to 3.46 eV for AlN, from0.24 eV to 2.79 eV for GaN and from 0.60 eV to 0.90 eV for InN.  相似文献   
82.
The influences of soil dilatancy angle on three-dimensional (3D) seismic stability of locally-loaded slopes in nonassociated flow rule materials were investigated using a new rotational collapse mechanism and quasi-static coefficient concept. Extended Bishop method and Boussinesq theorem were employed to establish the stress distribution along the rupture surfaces that are required to obtain the rate of internal energy dissipation for the nonassociated flow rule materials in rotational collapse mechanisms. Good agreement was observed by comparing the current results with those obtained using the translational or rotational mechanisms and numerical finite difference method. The results indicate that the seismic stability of slopes reduces by decreasing the dilatancy angle for nonassociated flow rule materials. The amount of the mentioned decrease is more significant in the case of mild slopes in frictional soils. A nearly infinite slope under local loading, whether its critical failure surface is 2D or 3D, not only depends on the magnitude of the external load, but also depends on the dilatancy angle of soil and the coefficient of seismic load.  相似文献   
83.
In this paper, we suggest a new supervised learning method called Fourier based automated learning central pattern generators (FAL-CPG), for learning rhythmic signals. The rhythmic signal is analyzed with Fourier analysis and fitted with a finite Fourier series. CPG parameters are selected by direct comparison with the Fourier series. It is shown that the desired rhythmic signal is learned and reproduced with high accuracy. The resulting CPG network offers several advantages such as, modulation and robustness against perturbation. The proposed learning method is simple, straightforward and efficient. Furthermore, it is suitable for on-line applications. The effectiveness of the proposed method is shown by comparison with four other supervised learning methods as well as an industrial robotic trajectory following application.  相似文献   
84.
Patenting and licensing is not only a significant method of university knowledge transfer, but also an important indicator for measuring academic R&D strength and knowledge utilization. The methodologies of quantitative and qualitative analysis, including a special patent h-index indicator to assess patenting quality, were used to examine university patenting worldwide. Analysis of university patenting from 1998 to 2008 showed a significant overall global increase in which Chinese academia stands out: most of the top 20 universities in patenting in 2008 were in China. However, a low rate of utilization of Chinese academic patents may have roots in: (1) university research evaluation system encourages the patent production more, rather than the utilization; (2) problems in the formal mechanisms for university technology transfer and licensing, (3) industry’s limited expectation and receptive capabilities and/or (4) a mismatch between the interests of the two institutional spheres. The next action to be taken by government, university and industry in China will be to explore strategies for improving academic patent quality and industry take-up.  相似文献   
85.
This paper presents the results of fundamental investigations on the inception and propagation of corona discharge on an ice surface stressed with a standard lightning impulse voltage. High-speed photography and photomultiplier techniques were used to observe and record the propagation of the streamers. The effects of several experimental parameters such as freezing water conductivity and HV rod electrode radius on the streamer inception parameters were investigated. Moreover, time to first streamer, inception voltage and corresponding field, as well as streamer propagation velocity and charge deposited by a streamer on ice surface were measured. The results are discussed and emphases are laid on the main factors influencing the development of positive streamers on ice surface.  相似文献   
86.
Microbial fuel cells (MFCs) produce bioelectricity from a wide variety of organic and inorganic substrates. Chitin can be used as a slowly degrading substrate in MFCs and thus as a long-term fuel to sustain power by these devices in remote locations. However, little is known about the effects of particle size on power density and length of the power cycle (longevity). We therefore examined power generation from chitin particles sieved to produce three average particle sizes (0.28, 0.46 and 0.78 mm). The longevity increased from 9 to 33 days with an increase in the particle diameter from 0.28 to 0.78 mm. Coulombic efficiency also increased with particle size from 18% to 56%. The maximum power density was lower for the largest (0.78 mm) particles (176 mW m−2), with higher power densities for the 0.28 mm (272 mW m−2) and 0.46 mm (252 mW m−2) particle sizes. The measured lifetimes of these particles scaled with particle diameter to the 1.3 power. Application of a fractal dissolution model indicates chitin particles had a three-dimensional fractal dimension between 2 and 2.3. These results demonstrate particles can be used as a sustainable fuel in MFCs, but that particle sizes will need to be controlled to achieve desired power levels.  相似文献   
87.
Consider a lamellar inhomogeneity embedded in an unbounded isotropic elastic medium. When the elastic moduli of the lamellar inhomogeneity are zero it is a crack, if its elastic moduli are infinite it is an anticrack, and when its elastic moduli are finite it is called a quasicrack. Based on the Eshelby’s equivalent inclusion method (EIM), the present paper develops a unified approach for determination of the exact closed-form expressions for modes I, II, and III stress intensity factors (SIFs) at the tips of lamellar inhomogeneities under a remote applied polynomial loading.  相似文献   
88.
Superhydrophobic materials are currently used for their water‐repelling, self‐cleaning and anti‐fouling properties but are also potentially attractive to prevent snow or ice accumulation on exposed structures. Using the electrospinning technique, polymer mats made of polystyrene and poly[tetrafluoroethylene‐co‐(vinylidene fluoride)‐co‐propylene] (PTVFP) were prepared. They were found to show highly hydrophobic properties, water contact angle (CA) between 130 and 150°, when a dual fiber–bead microstructure was observed. Superhydrophobicity, CA > 150°, was reached when PTVFP mats were electrospun from a polymer solution containing dispersed polytetrafluoroethylene (PTFE) nanoparticles. Using atomic force microscopy imaging, protruding nanosized asperities on fiber and bead surfaces were observed and this structure led to superhydrophobic properties. Materials prepared from a high‐viscosity PTVFP/ethyl acetate solution with PTFE particles, 200 nm diameter and 8% (w/w), showed an 11.2% improvement in hydrophobicity, CA = 161°, compared to the materials obtained from a particle‐free polymer solution (CA = 143°). Copyright © 2007 Society of Chemical Industry  相似文献   
89.
The aim of this work is to study the influence of electron beam irradiation on the structure of polypropylene (PP)/polybutene‐1 (PB‐1) blend in the branching process. The blend with 10 wt% of PB‐1 and 0.5 wt% trimethylolpropane trimethacrylate monomer is prepared and irradiated at different doses. The rheological properties of the melts in shear and extensional mode were evaluated, and their thermal behavior, crystalline structure, and morphology are studied by differential scanning calorimetry, wide‐angle X‐ray diffraction, and scanning electron microscopy. The presence of long chain branched structure is approved by higher zero‐shear viscosity (η0), longer relaxation time and pronounced strain‐hardening behavior in the within the range of dose tested. By increasing the irradiation dose and enhancing chain scission in the backbone and long chain branches, the decline in melting temperature, duplication of melting peak, and the decrease in zero‐shear viscosity were observed. The morphological study of the blends before and after irradiation revealed no considerable change in PB‐1 droplet size and their distribution in the PP matrix. The emulsion theoretical models could predict well the rheological behavior of all samples and no significant change was observed on the interfacial interaction of PP and PB‐1. POLYM. ENG. SCI., 54:1747–1756, 2014. © 2013 Society of Plastics Engineers  相似文献   
90.
Herein, we report a magnetic molecularly imprinted polymers (m‐MIPs) using Fe3O4 as a magnetic component, carvedilol as a template molecule for the solid‐phase extraction (MISPE) as the sample clean‐up technique combined with high‐performance liquid chromatography (HPLC) and for the controlled release of carvedilol at different pH values of 1.0 (simulated gastric fluid), 6.8 (simulated intestinal fluid), and 7.4 (simulated biological fluid). The adsorption kinetics was modeled with the pseudo‐first‐order and pseudo‐second‐order kinetics, and the adsorption isotherms were fitted with Langmuir and Freundlich models. The performance of the m‐MIPs for the controlled release of carvedilol was assessed and results indicated that the magnetic MIPs also have potential applications in controlled drug release. Furthermore, the m‐MIPs were applied to the extraction of carvedilol from human blood plasma samples. Carvedilol can be quantified by this method in the 2–350 μg L?1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.13 and 0.45 μg L?1. The results from HPLC showed good precision (3.5% for 50.0 μg L?1) and recoveries (between 85 and 93) using m‐MIP from human plasma samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41209.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号