首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   75篇
  国内免费   2篇
电工技术   4篇
综合类   2篇
化学工业   341篇
金属工艺   17篇
机械仪表   13篇
建筑科学   12篇
矿业工程   1篇
能源动力   38篇
轻工业   105篇
水利工程   14篇
石油天然气   6篇
无线电   62篇
一般工业技术   157篇
冶金工业   10篇
原子能技术   10篇
自动化技术   93篇
  2024年   4篇
  2023年   23篇
  2022年   58篇
  2021年   72篇
  2020年   62篇
  2019年   68篇
  2018年   91篇
  2017年   70篇
  2016年   71篇
  2015年   37篇
  2014年   56篇
  2013年   78篇
  2012年   51篇
  2011年   48篇
  2010年   37篇
  2009年   15篇
  2008年   15篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有885条查询结果,搜索用时 15 毫秒
61.
Taguchi method (TM) and response surface methodology (RSM) have been employed to optimize three parameters, including the amounts of P123, the amounts of nitric acid and calcination temperature, in order to define an optimal setting for sol-gel synthesis of high surface area mesoporous alumina powder (MA). Herein, the comparison of the both statistical approaches has been examined and discussed considering the nitrogen adsorption as the response variable because this important character for mesoporous materials is exceedingly sensitive to the synthesis parameters. The BET surface area (SBET) and pore volume of MA under Taguchi optimal condition were 323.5 m2 g−1 and 0.551 cm3 g−1, respectively, by conducting confirmation test. Furthermore, the confirmation test showed high SBET of MA (363.4 m2 g−1), which was in a good agreement with calculated SBET result (431.25 m2 g−1) by a quadratic model under RSM optimal condition. Moreover, 3D response surface plots and 2D contour plots of desirability have been discussed to visualize the influence of input factors on response variable. It is also concluded that RSM shows more appropriate (12.33% higher SBET than TM) and efficient optimal condition with determining a quadratic function as the relationship between SBET and synthesis parameters.  相似文献   
62.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   
63.
A four‐step synthetic strategy was applied to achieve novel methacrylic monomers. 5‐Norbornene‐2,2‐dimethanol was prepared from a Diels–Alder reaction of cyclopentadiene and acrolein, followed by the treatment of the adduct with an HCHO/KOH/MeOH solution. The resulting 1,3‐diol (1) was then acetalized with different aromatic aldehydes having OH groups on the ring to produce four spiroacetal derivatives. The reaction of methacryloyl chloride with the phenolic derivatives led to four new methacrylic monomers that were identified spectrochemically (mass, FTIR, 1H‐NMR, and 13C‐NMR spectroscopy). Free radical solution polymerization was used to prepare novel spiroacetal–norbornene containing polymethacrylates, which were characterized by FTIR and 1H‐NMR spectroscopy and differential scanning calorimetry and thermogravimetric thermal analysis. Gel permeation chromatography was performed to determine molecular weight averages and polydispersity. The polymethacrylate having naphthalenic nuclei was recognized to be the highest molecular weight polymer (n = 12144, ηinh = 0.80 dL/g) with the highest thermal stability. All the polymers showed good solubility in a variety of common organic solvents. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 30–38, 2000  相似文献   
64.
A series of biopolymer‐based superabsorbent hydrogels based on carboxymethyl cellulose has been prepared by free‐radical graft copolymerization of acrylamide and 2‐acrylamido‐2‐methylpropan sulfonic acid (AMPS) in aqueous solution using methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator. The effect of variables on the swelling capacity such as: acrylamide/AMPS weight ratio, reaction temperature, and concentration of the initiator and crosslinker were systematically optimized. The results indicated that with increasing the amount of AMPS, the swelling capacity is increased. FT‐IR spectroscopy and scanning electron microscope analysis were used to confirm the hydrogel structure. Swelling measurements of the synthesized hydrogels in different salt solutions indicated considerable swelling capacity. The absorbency under load of the superabsorbent hydrogels was determined by using an absorbency under load tester at various applied pressures. A preliminary swelling and deswelling behaviors of the hydrogels were also studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
65.
This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, −200 mV and 300 s, respectively, and the scan rate at 50 mV s−1 in the scan range of −200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.  相似文献   
66.
Diffusion annealing of palladium-coated Ti-Ni plates was performed at temperatures ranging from 900 °C to 1,000 °C, to accomplish a compositional gradient in Ti-rich, Ti-Ni shape memory alloys. The aim of this study was to increase the transformation temperatures and transformation temperature intervals. Palladium diffusion profiles were measured by energy dispersive spectroscopy, and the corresponding approximate diffusion coefficients of the annealed specimens were calculated. The Gaussian solution of Fick’s second law for the one-dimensional lattice diffusion of a tracer was used. The transformation behavior studies were performed by differential scanning calorimetry. It was depicted that annealed specimens show longer transformation intervals compared to the bare alloy. In addition, annealed specimens showed improved shape memory properties that were attributed to the lower amount of Ti2Ni precipitates in the diffusion layer. The shape memory behaviour of the samples was detected using micro-indentation at room temperature, followed by heating them above the austenite formation temperature to calculate the shape recovery ratio.  相似文献   
67.
The curing behavior and kinetics of epoxy resin with diaminodiphenylmethane (DDM) as the curing agent was studied by many researchers, however all of them prepared the system at a high‐temperature condition (i.e., T ≥ 80°C). In this study, a mixture of epoxy/DDM was prepared at ambient temperature and its curing characteristics were studied by using differential scanning calorimetry (DSC). The autocatalytic model was used to calculate the kinetic factors in the dynamic experiments. The kinetics of the curing reaction was also evaluated by two different isoconversional models; namely Friedman method and the Advanced Isoconversional method proposed by Vyazovkin to investigate the activation energy behavior during the curing reaction. The activation energy of the curing reaction was found to be in the range of 48 ± 2 kJ/mol and might be considered to be constant during the curing. In fact, our findings were different from the result reported by other researchers for the system which was prepared at elevated temperature. Therefore, it seems that the preparation temperature of the samples influenced considerably on the curing behavior of epoxy with DDM. Finally, a time–temperature–transformation (TTT) diagram was established to determine the cure process and glass transition properties of the system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
68.
A simple, fast, and reliable liquid–liquid micro-extraction (LLME) method assisted by thermal ultrasound approach was developed for simultaneous determination of synthetic phenolic antioxidants (SPAs) in edible oils by high-performance liquid chromatography equipped with ultraviolet detector (HPLC-UV). The synthetic antioxidants were propyl gallate (PG), butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and butylated hydroxyltoluene (BHT). The best extraction conditions were observed were methanol/acetonitrile (1:1, v/v) as the solvent, ultrasound at 4 min, and a temperature of 40°C. The linearity of the calibration curves for the optimum conditions were R2 > 0.989 for all of the SPAs in a range from 1–200 μg ml−1. Relative standard deviation (RSD %) for five analysis was in range of 2.83% to 4.21%. Limit of detection (LOD) and limit of quantification (LOQ) were obtained in range of 0.012–0.06 and 0.04–0.2 μg g−1, respectively. With regard to recovery, a range of 91%–116% was calculated for the spiked edible oils.  相似文献   
69.
Inflammatory bowel diseases (IBDs) are immune-mediated, chronic relapsing diseases with a rising prevalence worldwide in both adult and pediatric populations. Treatment options for immune-mediated diseases, including IBDs, are traditional steroids, immunomodulators, and biologics, none of which are capable of inducing long-lasting remission in all patients. Dendritic cells (DCs) play a fundamental role in inducing tolerance and regulating T cells and their tolerogenic functions. Hence, modulation of intestinal mucosal immunity by DCs could provide a novel, additional tool for the treatment of IBD. Recent evidence indicates that probiotic bacteria might impact immunomodulation both in vitro and in vivo by regulating DCs’ maturation and producing tolerogenic DCs (tolDCs) which, in turn, might dampen inflammation. In this review, we will discuss this evidence and the mechanisms of action of probiotics and their metabolites in inducing tolDCs in IBDs and some conditions associated with them.  相似文献   
70.
The current paper focuses on synthesizing a high-efficiency microwave absorber via incorporating the nanofillers of graphene oxide-polyaniline (GO-PANI), barium-strontium titanate (BST), and soft-hard ferrite within the polyester matrix. The nanocomposite magnets of (Ba0.5Sr0.5Fe12O19)1-x hard/(CoFe2O4)x soft (x = 0.2, 0.5, and 0.8) were prepared using sol-gel auto-combustion method. The GO-PANI and BST were successfully synthesized by in situ polymerization and improved polymerization, respectively. The phase structure, chemical structure, morphology, and microwave absorption properties of the synthesized nanocomposites were characterized by X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM), vector network analyzer (VNA) techniques, respectively. The results showed that the synergistic effects of the combination of dielectric (BST), conductive (GO-PANI), and magnetic materials (hard-soft ferrites) provided the reflection loss values of less than ?20 dB (>99% absorption) in the X-band region. The minimum reflection loss of ?35 dB (>99.99% absorption) was obtained by the optimal formulation including (Ba0.5Sr0.5Fe12O19)0.2 (CoFe2O4)0.8, and the weight ratio of 1: 2 for both BST/soft-hard ferrite and hard-soft ferrite + BST/GO-PANI with the thickness of 1 mm. According to the results, the thickness factor plays a key role in improving the impedance matching. Consequently, the proposed nanocomposite can be employed as a novel kind of microwave absorbers with good impendence matching and high absorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号