首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   2篇
  国内免费   4篇
电工技术   1篇
化学工业   30篇
金属工艺   19篇
机械仪表   2篇
建筑科学   2篇
矿业工程   1篇
能源动力   1篇
轻工业   1篇
石油天然气   1篇
无线电   15篇
一般工业技术   45篇
冶金工业   12篇
原子能技术   4篇
自动化技术   12篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   10篇
  2013年   15篇
  2012年   10篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   12篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
91.
Metallurgical and Materials Transactions A - In this study, Al-Al3Ni nanocomposite was fabricated by friction stir processing (FSP) of a nickel-deposited Al6061-T6 plate. X-ray diffraction results...  相似文献   
92.
The relevance of the structure of carbon materials and milling on the carbothermic reduction of silica to produce nano-sized silicon carbide (SiC) was studied. Graphite (crystalline) and metallurgical coke (mainly amorphous) were chosen as carbon precursors that were mixed with amorphous pure nano-sized SiO2 and milled for different times. The SiC yield at 1450 °C for l h was influenced by the degree of milling. Extending the milling time increased SiC formation in both cases. Although some extensive milling converted both sources of carbon into amorphous phase, the amount of synthesized SiC from graphite was about 4.5-3 times higher than coke with increased extent of milling. Graphite is converted from stable crystalline state into the amorphous phase, so it absorbs more activation energy of milling and fresher active centers are created, while the already amorphous coke absorbs less energy and thus less fresh active centers are created. This energy difference acts as a driving force, resulting in higher yield of nano-sized SiC when graphite is used as carbon source.  相似文献   
93.
With the increasing use of implantable patches in biomedical applications, the significance of surface modification techniques in improving biocompatibility, enhancing adhesion, and regulating drug release has grown. A significant challenge that these methods must address is ensuring that the process does not harm the delicate fibers or therapeutic agents they contain. Here, we report surface functionalization of implantable, curcumin loaded Polycaprolactone (PCL) patches with pH-responsive poly(2-hydroxyethyl methacrylate-co-4-vinylpyridine), p(HEMA-co-4VP) polymer thin film. The polymer was coated on the patch surface via photo-initiated chemical vapor deposition (piCVD) where the polymerization was initiated by the UV degradation of the initiator tert-butyl peroxide (TBPO) and the monomer HEMA. Additionally, the piCVD method was utilized to crosslink the HEMA without the use of additional crosslinkers. The pH-responsiveness of the coating was achieved by incorporating 4VP into the copolymer structure. The effect of the coating was demonstrated through degradation and drug release studies. The presence of the polymer coating decelerated the fiber degradation and the pH-dependent swelling of the coating allowed for the control of drug release rates from the patches. The innovative use of piCVD as a coating method provides a platform for advancing tailored surface modifications in various biomedical applications.  相似文献   
94.
We aim to investigate the potential of collagen extracted from rainbow trout for tissue engineering applications. In this regard, nanocomposite scaffolds based on the extracted collagen reinforced with various concentrations of boron nitride (BN) nanoparticles (0, 3, 6, 9, and 12 wt%) were developed. In addition, the role of various concentrations of BN nanoparticles and two-step cross-linking process on the physical and chemical properties of nanocomposite scaffolds were investigated. Our results demonstrated the isolation of Type I collagen with excellent thermal stability but with some structural and chemical differences compared to other sources. The synergic role of BN nanoparticles and two-step cross-linking process resulted in a noticeable improvement in the mechanical properties of collagen-BN scaffolds. Noticeably, incorporation of 6 wt% BN along with a two-step cross-linking process significantly increased the compressive strength (9.5 times) and elastic modulus (four times) of the collagen scaffold. Besides, nanocomposite scaffolds significantly improved proliferation and spreading of MG-63 cell line, confirming their biocompatibility. The results suggested that the incorporation of BN nanoparticles along with a two-step cross-linking process not only could promote the mechanical and thermal performances of collagen scaffolds, but also enhanced high cell viability, and proliferation supporting their potential in tissue engineering applications.  相似文献   
95.
Fathallah A  Shalaby M 《Applied optics》2011,50(19):3128-3134
We explore a general type of stable Bessel beams in graded index media. The proposed axially symmetric medium is characterized by an "α" index profile. Explicit solutions for the radial envelope of the field E(r) are derived in terms of generalized Bessel functions. Emphasis is given on illustrating how far the conditions of the proposed modified structure permit only a Bessel function of the first kind to be uniquely retained in the solution. This paper considers both the optical and mathematical aspects. Some numerical examples corroborating our theoretical results are included, showing the stability, propagation, and diffraction of such Bessel beams.  相似文献   
96.
Batch biosorption experiments were carried out for the removal of methylene blue, a basic dye, from aqueous solution using raw and dried Enteromorpha spp., Mediterranean green alga. A series of assays were undertaken to assess the effect of the system variables, i.e. contact time, solution pH and sorbent amount. The results had showed that sorption capacity was optimal using 6–10 solution pH range (i.e. maximum adsorption capacity of 274 mg/g). The minimum sorbent concentration experimentally found to be sufficient to reach the total removal of the dye molecules from the aqueous solution was 5 g/L. Besides, equilibrium data were fitted using five linearisable isotherm models. The related results showed that the experimental data were very well represented by the Langmuir model for the linear regression analysis and both the Langmuir and Redlich–Peterson isotherm models for the non-linear analysis. In both cases, such modelling behaviour confirms the monolayer coverage of methylene blue molecules onto energetically homogenous Enteromopha surface. In addition, an exhaustive comparative study was done to situate this marine biomass among other proposed sorbents.  相似文献   
97.
The nanostructured CoAl intermetallic compound was produced by mechanical alloying (MA) of the Co50Al50 elemental powder mixture in a planetary high energy ball mill. The ordered B2-CoAl structure with the grain size of about 6 nm was formed via a gradual reaction after 10 h of MA. A thermodynamic analysis of the process was also done. The results showed that the intermetallic compound of CoAl had the minimum Gibbs free energy compared to solid solution and amorphous states indicating the initial MA product was the most stable phase in the Co-Al system which was changed to a partially disordered structure with a steady long-range order of 0.82 at further milling. This amount of disordering caused the enthalpy of final product to show an increase of about 5.1 kJ·mol-1. Calculation of enthalpy related to the triple defect formation revealed that the enthalpy required for Al anti-sites formation was about 3 times greater than that for Co anti-sites formation.  相似文献   
98.
In this work, Al2O3/Co nanocomposite was successfully prepared by mechanochemical reaction between Co3O4 and Al powders in a planetary high energy ball mill. The mechanism of the reaction was dealt using X-ray diffraction (XRD), differential thermal analysis (DTA), and thermodynamics calculations. It was found that Co3O4 reacts with Al through a self-sustaining combustion reaction after an incubation period of 50 min and the reaction between Co3O4 and Al involves two steps. First, Co3O4 reacts with Al to form CoO and Al2O3 at the temperature around melting point of Al, and at higher temperature, CoO reacts with remaining Al to form Co and Al2O3. Mechanical activation process decreases the reaction temperature from 1041 °C for as-received Co3O4 and Al powder mixture to 869 °C for 45 min milled powders. After annealing of powder milled for 12 h, no phase transformation has been detected. The crystallite sizes of both α-Al2O3 and Co remained in nanometeric scale after annealing at 1000 °C for 1 h.  相似文献   
99.
Nanostructured Al2024–multiwall carbon nanotubes (MWCNTs) composites were produced using optimized mechanical milling and hot pressing methods. Nanostructured Al2024 powder was first prepared through 30 h mechanical milling of the alloy powder. MWCNTs up to 3 vol.% were added to the milled Al2024 powder and milled for different times. Differential thermal analysis (DTA) and X-ray diffraction (XRD) were used to assess the structural changes and thermal behavior during mechanical milling and hot pressing. Hardness and compression tests were applied on bulk samples to evaluate their mechanical properties. Mechanical milling applied on Al2024 powders for 30 h resulted in the grain refinement to ~30 nm. DTA analysis showed an endothermic peak at ~632 °C due to Al2024 melting and an exothermic peak between 645 and 658 °C related to Al and MWCNTs reaction. Mechanical milling of nanocomposite powder for 4 h and following hot pressing at 500 °C under a pressure of 250 MPa for 0.5 h were selected as optimized conditions for bulk nanocomposite preparation. With MWCNTs addition up to 2 vol.%, relative density remained at 98%, and hardness increased to 245 HV. Compressive strength of nanocomposites found a maximum value of 810 MPa at 2 vol.% MWCNTs addition which is 78%, 34% and 12% greater than that for Al2024–O, Al2024–T6 and nanostructured Al2024, respectively.  相似文献   
100.
Synthesis of (Ni, Fe)3Al intermetallic compound by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures with composition Ni50Fe25Al25 was successfully investigated. The effects of Fe-substitution in Ni3Al alloy on mechanical alloying process and on the final products were investigated. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry, scanning electron microscopy and microhardness measurements. At the early stages, mechanical alloying resulted in a Ni (Al, Fe) solid solution with a layered nanocrystalline structure consisting of cold welded Ni, Al and Fe layers. By continued milling, this structure transformed to the disordered (Ni, Fe)3Al intermetallic compound which increased the degree of L12 ordering upon heating. In comparison to Ni–Al system, Ni (Al, Fe) solid solution formed at longer milling times. Meanwhile, the substitution of Fe in Ni3Al alloy delayed the formation of Ni (Al, Fe) solid solution and (Ni, Fe)3Al intermetallic compound. The microhardness for (Ni, Fe)3Al phase produced after 80 h milling was measured to be about 1170HV which is due to formation of nanocrystalline (Ni, Fe)3Al intermetallic compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号