首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   4篇
  国内免费   1篇
电工技术   2篇
化学工业   18篇
金属工艺   4篇
机械仪表   25篇
建筑科学   2篇
能源动力   9篇
轻工业   9篇
水利工程   1篇
石油天然气   6篇
无线电   7篇
一般工业技术   36篇
冶金工业   5篇
自动化技术   9篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   11篇
  2020年   10篇
  2019年   15篇
  2018年   9篇
  2017年   10篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
51.
The viscoelastic characteristics of ultra-high molecular weight polyethylene (UHMWPE) fibres are investigated, in terms of creep-induced recovery strain and force output, to evaluate their potential for producing a novel form of prestressed composite. Composite production involves subjecting fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix. After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding matrix, to produce a viscoelastically prestressed polymeric matrix composite (VPPMC). Previous research has demonstrated that nylon fibre-based VPPMCs can improve mechanical properties without needing to increase mass or section dimensions. The viability of UHMWPE fibre-based VPPMCs is demonstrated through flexural stiffness tests. Compared with control (unstressed) counterparts, these VPPMCs typically show increases of 20–40 % in flexural modulus. Studies on the viscoelastic characteristics indicate that these fibres can release mechanical energy over a long-timescale and fibre core–skin interactions may have an important role.  相似文献   
52.
ABSTRACT

Tank bottom sludge from storage tanks of Bombay High crude oil deposited during ten years have been studied. The yield of the sludge is approximately 0.1% wt. of the crude oil through-put. The residue boiling above 500°C amounts to over 50%. The distillate fractions collected at 50°C intervals have been analysed extensively and compared to fractions from whole crude of same boiling range. The sludge distillate are distinctly more paraffinic in nature.  相似文献   
53.
54.
Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 °C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature.  相似文献   
55.
The paper focuses on the development of a bilayer-woven fabric and investigating the effect of weave design and material type on its comfort properties. Face layer was plain woven with cotton yarn, while two different weave designs (2/2 and 3/1 twill) and four different materials (cotton, polyester, micropolyester and nylon) were used for the back layer. The comfort properties of fabric, including air permeability (AP), thermal resistance, water vapour resistance and overall moisture management capacity, were determined. It was found that both the layers of fabric as a whole contribute to the comfort properties of bilayer fabric. The highest AP was exhibited by fabrics having both layers of cotton, while 3/1 twill samples have a lower value of thermal resistance as compared to the 2/2 twill samples. The results further showed that micro polyester woven in 3/1 twill weave exhibits better comfort properties.  相似文献   
56.
Tunable optical delay lines have many applications for high-performance optical switching and signal processing. Slow light has emerged as an enabling technology for achieving continuously tunable optical delays. Delay reconfigurability opens up a whole new field of nonlinear signal processing using slow light. In this paper, the authors review recent advances in slow-light-based optical signal processing, with a focus on the data fidelity after traversing the slow light elements. The concept of slow-light-induced data pattern dependence is introduced and is shown to be the main signal degrading effect. We then propose and experimentally demonstrate phase-preserving slow light by delaying 10 Gb/s differential phase-shift keying (DPSK) signals with reduced DPSK pattern dependence. Spectrally efficient slow light using advanced multilevel phase-modulated formats is further described. With this technique, doubled bit-rate signals can be transmitted through a bandwidth-limited slow light element. We finally show several novel slow-light-based signal processing modules. Unique features such as multichannel operation, variable bit-rate capability, and simultaneous multiple functions are highlighted.  相似文献   
57.
Antifogging agents are very important for use on agricultural films. Fogging reduces crop yield and causes other negative effects. To overcome fogging problems on agricultural films, several approaches including surface coating and reactive extrusion methods have been used. To date, researchers have designed a variety of agents to prepare antifogging films. The mechanism and rules for the composition of such agents have also been reported. However, reported antifogging films do not exhibit satisfactory results. Therefore, antifogging methods require further improvement. In this review, different preparation methods for antifogging agents and films are summarized, along with the advantages and disadvantages of each method. Moreover, test methods for antifogging performance are introduced.  相似文献   
58.
A successful approach to the development of tailored cutting tool materials requires the development of innovative concepts at each step of manufacturing, from the material design, synthesis of composite powders, to their processing and sintering. In this paper, a computational design approach is applied in the development of reinforced ceramic-based cutting tool inserts with tailored structural and thermal properties. Several potential filler materials are considered at the material design stage for the improvement of structural and thermal properties of a selected matrix material. Properties, such as an improved thermal conductivity and reduced coefficient of thermal expansion are essential for an effective cutting tool insert to absorb thermal shock at varying temperatures. In addition, structural properties such as elastic modulus have to be maintained within a moderate range. A mean-field homogenization theory and effective medium approximation using an in-house code are applied for predicting potential optimum structural and thermal properties for the required application. This is done by considering the effect of inclusions as a function of volume fraction and particle size in the ceramic base matrix. Single inclusion composites such as alumina-silicon (Al2O3-SiC) and alumina-cubic boron nitride (Al2O3-cBN) as well as hybrid composite such as alumina-silicon-cubic boron nitride (Al2O3-SiC-cBN) are developed using the Spark Plasma Sintering (SPS) process in line with the designed range of filler size and volume fraction to validate the computational results. It is found that the computational material design approach is precise enough in predicting the target properties of a designed hybrid composite material for cutting tool inserts.  相似文献   
59.
Compatibility of automotive materials in biodiesel: A review   总被引:2,自引:0,他引:2  
Use of biodiesel in automobile can significantly reduce our dependence of fossil fuel and help reduce environmental pollution. However, there are concerns over the compatibility of currently used automotive materials in biodiesel. A few automobile manufacturers extended their warranty only to lower blends of biodiesel (e.g. B5). Higher blends (e.g. B50 or B100) are still not covered by warranty. In automobile fuel system, metallic materials like ferrous alloy and non-ferrous alloys, and elastomers come in contact with fuel. Biodiesel, having different chemical characteristics from diesel, can interact with materials in a different way. It can cause corrosive and tribological attack on metallic components and degrade elastomer parts. This paper attempts to present an overview of the work done so far on the compatibility of biodiesel with automotive materials.  相似文献   
60.
Seed micromorphology of 13 species, belonging to four genera of subfamily Alsinoideae (Caryophyllaceae) were investigated with scanning electron microscopy (SEM), in order to assess their diagnostic significance at generic level and provide additional evidence on species delimitation, as well as correct identification and phylogenetic position. Genera and species of subfamily Alsinoideae exhibit great variation in ultrastructure and a high diversity of novel micromorphological characters were observed. Variation in seed shape, color, hilum, anticlinal wall, epidermal cell, cell surface, margins, and quantitative characters as length and width were studied in detail, compared, illustrated, and their taxonomic significant were discussed. Seed shapes of the species were classified as reniform, round, angular, subcircular, subreniform, and elliptical pyriform, with sub‐central, central, basal, and nearly basal hilum. Wavy, irregular, tetragonal, and elongated epidermal cells structure has been observed as an exomorphological character. The present findings show that the micromorphology of subfamily Alsinoideae provides taxonomic information and is helpful to distinguish different species. The results also explained that SEM morphology of seeds provide important data about affinity among taxa and give potential characters in delimitation of members of subfamily Alsinoideae at generic and species level. A principal component analysis allowed to highlight the most outsiders among seed micromorphology with a possible explanation. Taxonomic keys were developed based on micromorphological characters to delimit the species and useful for their quick identification within subfamily Alsinoideae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号